Preview

Лечащий Врач

Расширенный поиск

Современные данные о видах иммунного ответа

https://doi.org/10.26295/OS.2020.98.43.008

Полный текст:

Об авторах

Д. А. Сизов
ФГБОУ ВО ДВГМУ МЗ РФ
Россия

Хабаровск



Н. Ю. Рукина
ФГБОУ ВО ДВГМУ МЗ РФ

кандидат медицинских наук,

Хабаровск



Список литературы

1. Huber J. P., Farrar D. J. Regulation of effector and memory T-cell functions by type I interferon // Immunology. 2011; 132: 466-474.

2. Dolasia K., et al. TLRs/NLRs: Shaping the landscape of host immunity // Int. Rev. Immunol. 2018; 37: 3-19.

3. Lotze M. T., Tracey K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal // Nat Rev Immunol. 2005; 5: 331-342.

4. Andersson U., Tracey K. J. HMGB1 is a therapeutic target for sterile inflammation and infection // Annu Rev Immunol. 2011; 29: 139-162.

5. Venereau E., et al. HMGB1 as biomarker and drug target // Pharmacol Res. 2016; 111: 534-544.

6. Schiraldi M., et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4 // J Exp Med. 2012; 209: 551-563.

7. Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns // J Biol Chem. 2014; 289: 35237-35245.

8. Jin H. S., et al. Mitochondrial control of innate immunity and inflammation // Immune Netw. 2017; 17: 77-88.

9. Santoni G., et al. Danger - and pathogen-associated molecular patterns recognition by pattern recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuro inflammation. 2015; 12: 21.

10. Boyapati R. K., et al. Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications // Muc. Immunol. 2016; 9 (3): 567-582.

11. Beutler B. Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases // Immunol. 2009; 227 (1): 248-263.

12. Goubau D., Deddouche S., Reis e Sousa C. Cytosolic sensing of viruses // Immunity. 2013; 38: 855-869.

13. Joosten L. A., et al. Toll-like receptors and chronic inflammation in rheumatic diseases: New developments // Nat. Rev. Rheumatol. 2016; 12: 344-357.

14. Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models // Front. Immunol. 2018; 9: 1027.

15. Barber G. N. Cytoplasmic DNA innate immune pathways // Immunol. 2011; 243 (1): 99-108.

16. Barber G. N. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses // Curr. Opin. Immunol. 2011; 23 (1): 10-20.

17. Xie L., et al. Molecular cloning and functional characterization of porcine DNA-dependent activator of IFN-regulatory factors (DAI) // Dev. Comp. Immunol. 2010; 34 (3): 293-299.

18. Игнатов П. Е. Иммунитет и инфекция. М.: Время, 2002. 352 с. @@Ignatov P. Ye. Immunitet i infektsiya. (Immunity and infection.) M.: Vremya, 2002. 352.

19. Murphy K., et al. Janeway's Immunobiology, 9th Edition. New York, NY: Garland Science, 2016. P. 29.

20. Gu J., et al. Human cd39hi regulatory T cells present stronger stability and function under inflammatory conditions // Cell Mol Immunol. 2017; 14: 521-528.

21. Van Gool F. et al. A mutation in the transcription factor Foxp3 drives T helper 2 effector function in regulatory T cells // Immunity. 2019; 50: 362-377.

22. Van Nimwegen E. Scaling laws in the functional content of genomes // Trends Genet journal. 2003; 19 (9): 479-484.

23. Zaret K. S., Mango S. E. Pioneer transcription factors, chromatin dynamics, and cell fate control // Curr. Opin. Genet. Dev. 2016; 37: 76-81.

24. Huang W., et al. ITK signalling via the Ras/IRF4 pathway regulates the development and function of Tr1 cells // Nat. Commun. 2017; 8: 15871.

25. Smith E. L., et al. Splice variants of human FOXP3 are functional inhibitors of human CD4+ T-cell activation // Immunology. 2006; 119: 203-211.

26. Хаитов Р. М. Иммунология. М.: ГЭОТАР-Медиа, 2018. 496 с. @@Khaitov R. M. Immunologiya. (Immunology.) M.: GEOTAR-Media, 2018. P. 496.

27. Iwamoto T., et al. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients // FEBS J. 2008; 275 (18): 4448-4455.

28. Trifari S., et al. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells // Nat Immunol. 2009; 10: 864-871.

29. Lee A. Y., et al. CC chemokine ligand 20 and its cognate receptor CCR6 in mucosal T cell immunology and inflammatory bowel disease: odd couple or axis of evil? // Front Immunol. 2013; 4: 194.

30. Dinarello C. Historical insights into cytokines // European Journal of Immunology. 2007; 37 (1): 34-45.

31. Su D. L., et al. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE // Journal of Biomedicine and Biotechnology. 2012; vol. 2012.

32. Eberl G. Immunity by equilibrium // Nat. Rev. Immunol. 16, 524-532.

33. Hasegawa H., et al. Expanding diversity in molecular structures and functions of the IL-6/IL-12 heterodimeric cytokine family // Front. Immunol. 2016; 7: 479.

34. Cavaillon J. M. Pro- versus anti-inflammatory cytokines: myth or reality // Cellular and Molecular Biology. 2001; 47 (4): 695-702.

35. Tengvall S., et al. Interleukin-26: An Emerging Player in Host Defense and Inflammation // Journal of Innate Immunity. 2016; 8 (1): 15-22.

36. Iwasaki A., Pillai P. S. Innate immunity to influenza virus infection // Nature Reviews Immunology. 2014; 14 (5): 315-328.


Рецензия

Для цитирования:


Сизов Д.А., Рукина Н.Ю. Современные данные о видах иммунного ответа. Лечащий Врач. 2020;(11):35-39. https://doi.org/10.26295/OS.2020.98.43.008

For citation:


Sizov D.A., Rukina N.Yu. Current condition of immune response types. Lechaschi Vrach. 2020;(11):35-39. (In Russ.) https://doi.org/10.26295/OS.2020.98.43.008

Просмотров: 86


Creative Commons License
Контент доступен под лицензией Attribution-NonCommercial-NoDerivatives 4.0 International.


ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)