Pharmacogenomics in pediatric oncology: possibility to overcome drug-induced toxicity of anticancer treatment
https://doi.org/10.51793/OS.2023.26.12.007
Abstract
Background. Short-term and long-term toxicities of anticancer treatment are of increasing relevance, especially in children. Adverse events of anticancer treatment can cause mortality, organ toxicity of varying severity, subsequent disability, significant negative impact on psychosocial functioning and quality of life of patients and their families. This warrants the need for research on risk factors of drug-induced toxicity and new therapeutic approaches aimed to minimize the negative effects of anticancer and concomitant therapy, including new targeted drugs and immunotherapy. The development of human genome sequencing technologies and its integration into clinical practice, make possible treatment personification based on personal genetic variations. Pharmacogenomics, as a branch of pharmaceutics and pharmacology, plays a key role in predicting drug-induced toxicity and resistance to anticancer treatment in each patient. The main problem is the limited number of clinical studies in this area, small and heterogeneous cohorts of patients and the relative rarity of malignancies in childhood, that makes difficult to interpret obtained data and determine their clinical significance.
Results. This article presents current literature data on clinically significant drug-gene associations and their therapeutic value on the safety and efficacy of anticancer therapy in pediatric patients, their diagnostic, therapeutic and prognostic value, as well as the opportunities of genome-guided managing treatment protocols, including option of rescue therapy.
About the Authors
Yu. V. DinikinaРоссия
Yulia V. Dinikina, Dr. of Sci. (Med.), pediatric oncologist, Head of the Department of chemotherapy of oncohematological diseases and bone marrow transplantation for children, Head of the Research laboratory of pediatric neuroimmuno-oncology at the world-class Scientific Center «Center for Personalized Medicine»
2 Akkuratova str., St. Petersburg, 197341
E. N. Imyanitov
Россия
Evgeny N. Imyanitov, Dr. of Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Head of the Scientific department of tumor growth biology, geneticist
68 Leningradskaya str., Pesochny village, St. Petersburg, 197758
M. B. Belogurova
Россия
Margarita B. Belogurova, Dr. of Sci. (Med.), Professor, Leading researcher at the Research laboratory of pediatric neuroimmuno-oncology at the worldclass Scientific Center «Center for Personalized Medicine»
2 Akkuratova str., St. Petersburg, 197341
I. L. Nikitina
Россия
Irina L. Nikitina, Dr. of Sci. (Med.), Professor, Head of the Research Laboratory of Pediatric Endocrinology of Institute of Endocrinology, Head of the Department of Childhood Diseases with the Clinic of the Institute of Medical Education
2 Akkuratova str., St. Petersburg, 197341
References
1. Aagard L., Christensen A., Hansen E. H. Information about adverse drug reactions reported in children: a qualitative review of empirical studies. British Journal of Clinical Pharmacology. 2010; 70 (4): 481-491. DOI: 10.1111/j.1365-2125.2010.03682.x.
2. Clemens E., van der Kooi A. L. F., Broer L., van Dulmen-den Broeder E., Visscher H., Kremer L., Tissing W., Loonen J., Ronckers C. M., Pluijm S. M. F., Neggers S. J. C. M. M., Zolk O., Langer T., Zehnhoff-Dinnesen A. A., Wilson C. L., Hudson M. M., Carleton B., Laven J. S. E., Uitterlinden A. G., van den Heuvel-Eibrink M. M. The influence of genetic variation on late toxicities in childhood cancer survivors: A review. Crit Rev Oncol Hematol. 2018; 126: 154-167. DOI: 10.1016/j.critrevonc.2018.04.001.
3. Urtasun A., Olivera G. G., Senndra L., Alino S. F., Berlanga P., Gargallo P., Hervas D., Balaguer J., Juan-Ribelles A., del Mar Andres M., Canete A., Herrero MJ. Personilized medicine in infant population with cancer: Pharmacogenetic pilot study of polymprphisms related to toxicity and response to chemotherapy. Cancers 2023; 15 (1424): 2-14. DOI: 10.3390/cancers1501424.
4. Elzagallaai A. A., Carleton B. C., Rieder M. J. Pharmacogenomics in Pediatric Oncology: Mitigating Adverse Drug Reactions While Preserving Efficacy. Annual Reviw of Pharmacology and Toxicology. 2021; 61: 679-699. DOI: 10.1146/annurev-pharmtox-031320-104151.
5. Kearns G. L., Abdel-Rahman S. M., Alander S. W., Blowey D. L., Leeder J. S., Kauffman R. E. Developmental pharmacology-drug disposition, action, and therapy in infants and children. N Engl J Med. 2003; 349 (12): 1157-1167. DOI: 10.1056/NEJMra035092.
6. Brouwer K. L., Aleksunes L. M., Brandys B., Giacoia G. P., Knipp G., Lukacova V., Meibohm B., Nigam S. K., Rieder M., de Wildt S. N; Pediatric Transporter Working Group. Human Ontogeny of Drug Transporters: Review and Recommendations of the Pediatric Transporter Working Group. Clin Pharmacol Ther. 2015; 98 (3): 266-287. DOI: 10.1002/cpt.176.
7. Franczyk B., Rysz J., Gluba-Brzózka A. Pharmacogenetics of Drugs Used in the Treatment of Cancers. Genes. 2022; 13 (311): 2-31. DOI: 10.3390/genes13020311.
8. Roden D. M., George A. L. The genetic basis of variability in drug responses. Nat. Rev. Drug Discov. 2002; 1: 37-44. DOI: 10.1038/nrd705.
9. Meyer U. A., Zanger U. M., Schwab M. Omics and drug response. Annu. Rev. Pharmacol. Toxicol. 2013; 53: 475-502. DOI: 10.1146/annurev-pharmtox-010510-100502.
10. Barcenas-Lopez D. A., Mendiola-Soto D. K., Nunez-Enriquez J. C., Mejia-Arangure J. M., Hidalgo-Miranda A., Jimenez-Morales S. Promising genes and variants to reduce chemotherapy adverse effects in acute lymphoblastic leukemia. Translational Oncology, 2021; 14 (1): 100978. DOI: 10.1016/j.tranon.2020.100978.
11. Ahmed S., Zhou Z., Zhou J., Chen S.-Q. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genom. Proteom. Bioinform. 2016; 14: 298-313. DOI: 10.1016/j.gpb.2016.03.008.
12. Ehmann F., Caneva L., Prasad K., Paulmichl M., Maliepaard M., Llerena A., Ingelman-Sundberg M., Papaluca-Amati M. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharm. J. 2015; 15: 201-210. DOI: 10.1038/tpj.2014.86.
13. Zineh I., Pacanowski M. A. Pharmacogenomics in the assessment of therapeutic risks versus benefits: Inside the United States. Food and Drug Administration. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2011; 31: 729-735. DOI: 10.1592/phco.31.8.729.
14. www.pharmgkb.org.
15. Brock P. R., Knight K. R., Freyer D. R., Campbell K. C. M., Steyger P. S., Blakley B. W., Rassekh S. R., Chang K. W., Fligor B. J., Rajput K., Sullivan M., Neuwelt E. A. Platinum-induced ototoxicity in children: A consensus review on mechanisms, predisposition, and protection, including a new international society of pediatric oncology Boston ototoxicity scale. Journal of Clinical Oncology. 2012; 30 (19): 2408-2417. DOI:10.1200/JCO.2011.39.1110.
16. Elzagallaai A. A., Greff M., Rieder M. J. Adverse drug reactions in children: the double-edged sword of therapeutics. Clin. Pharmacol. Ther. 2017; 101: 725-35. DOI: 10.1002/cpt.677.
17. Fakhry H., Goldenberg M., Sayer G., Aye S. S., Bagot K., et al. Health-related quality of life in childhood cancer. J. Dev. Behav. Pediatr. 2013; 34: 419-440. DOI: 10.1097/DBP.0b013e31828c5fa6.
18. Oeffinger K. C., Mertens A. C., Sklar C. A., Kawashima T., Hudson M. M., et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 2006; 355: 1572-82. DOI: 10.1056/NEJMsa060185.
19. Mlakar V., Huezo-Diaz Curtis P., Satyanarayana Uppugunduri C. R., Krajinovic M., Ansari M. Pharmacogenomics in pediatric oncology: review of gene-drug associations for clinical use. Int. J. Mol. Sci. 2016; 17 (9): 1502. DOI: 10.3390/ijms17091502.
20. Taylor Z. L., Vang J., Lopez-Lopez E., Oosterom N., Mikkelsen T., Ramsey L. B. Systematic Review of Pharmacogenetic Factors That Influence High-DoseMethotrexate Pharmacokinetics in PediatricMalignancies. Cancers. 2021; 13 (2837): 1-20. DOI: 10.3390/cancers13112837.
21. Bernsen E. C., Hagleitner M. M., Kouwenberg T. W., Hanff L. M. Pharmacogenomics as a Tool to Limit Acute and Long-Term Adverse Effects of Chemotherapeutics: An Update in Pediatric Oncology. Front. Pharmacol. 2020; 11: 1184. DOI: 10.3389/fphar.2020.01184.
22. Yang X., Li G., Yang T., Guan M., An N., Yang F., Dai Q., Zhong C., Luo C., Gao Y., Das S., Xing Y., Shang H., Shang H. Possible susceptibility genes for intervention against chemotherapy-induced cardiotoxicity. Oxidative Medicine and cellular longevity. 2020; 2020: 4894625. DOI: 10.1155/2020/4894625.
23. Tan Y., Kong Q., Li X., Tang Y., Mai H., Zhen Z., Zhou D., Chen H. Relationship between methylenetetrahydrofolate reductase gene polymorphisms and methotrexate drug metabolism and toxicity. Translational Pediatrics. 2023; 12 (1). DOI: 10.21037/tp-22-671.
24. Schulte R. R., Choi L., Utreja N., van Driest S. L., Stein C. M., Ho R. H. Effect of SLCO1B1 Polymorphisms on High-Dose Methotrexate Clearance in Children and Young Adults with Leukemia and Lymphoblastic Lymphoma. Clin. Transl. Sci. 2021; 14: 343-353. DOI: 10.1111/cts.12879.
25. Ross C. J., Katzov-Eckert H., Dube´ M. P., Brooks B., Rassekh S. R., Barhdadi A., Feroz-Zada Y., Visscher H., Brown A. M. K., Reeder M. J., Rogers P. C., Phillips M. S., Carleton B. C., Hayden M. R., CPNDS Consortium. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet. 2009; 41 (12): 1345-1349. DOI: 10.1038/ng.478.
26. Umerez M., Gutierrez-Camino Á., Muñoz-Maldonado C., Martin-Guerrero I., Garcia-Orad A. MTHFR polymorphisms in childhood acute lymphoblastic leukemia: influence on methotrexate therapy. Pharmgenomics Pers Med. 2017; 10: 69-78. DOI: 10.2147/PGPM.S107047.
27. Chae H., Kim M., Choi S. H., Kim S. K., Lee J. W., Chung N. G., Cho B., Kim Y. Influence of plasma methotrexate level and MTHFR genotype in Korean paediatric patients with acute lymphoblastic leukaemia. J Chemother. 2020; 32 (5): 251-259. DOI: 10.1080/1120009x.2020.1764280.
28. Haidar C. E., Relling M. V., Hoffman J. M. Preemptively Precise: Returning and Updating Pharmacogenetic Test Results to Realize the Benefits of Preemptive Testing. Clin. Pharmacol. Ther. 2019; 106 (5): 942-944. DOI: 10.1002/cpt.1613.
29. Relling M. V., Schwab M., Whirl-Carrillo M., Suarez-Kurtz G., Pui CH., Stein C. M., Moyer A. M., Evans W. E., Klein T. E., Antillon-Klussmann F. G., Caudle K. E., Kato M., Yeoh A. E. J., Schmiegelow K., Yang J. J. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin. Pharmacol. Ther. 2019; 105 (5): 1095-1105. DOI: 10.1002/cpt.1304.
30. KNMP apothekersorganisatie (2020). Pharmacogenetics (Accessed Accesed on December 01, 2019). Available from: https://www.knmp.nl/patientenzorg/medicatiebewaking/farmacogenetica/pharmacogenetics-1.
31. Li B., Brady S. W., Ma X., Shen S., Zhang Y., Li Y., Szlachta K., Dong L., Liu Y., Yang F., Wang N., Flasch D. A., Myers M. A., Mulder H. L., Ding L., Liu Y., Tian L., Hagiwara K., Xu K., Zhou X., Sioson E., Wang T., Yang L., Zhao J., Zhang H., Shao Y., Sun H., Sun L., Cai J., Sun H. Y., Lin T. N., Du L., Li H., Rusch M., Edmonson M. N., Easton J., Zhu X., Zhang J., Cheng C., Raphael B. J., Tang J., Downing J. R., Alexandrov L. B., Zhou B. S., Pui C. H., Yang J. J., Zhang J. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood. 2020; 135 (1): 41-55. DOI: 10.1182/blood.2019002220.
32. Pirmohamed M. Pharmacogenomics: current status and future perspectives. Natur reviews genetics. DOI: 10.1038/s41576-022-0057208.
33. Nelson M. R., Johnson T., Warren L., Hughes A. R., Chissoe S., Xu C. F., Waterworth D. M. The genetics of drug efficacy: opportunities and challenges. Reviews. 2016; 17: 197-206. DOI:10.1038/nrg.2016.2.
Review
For citations:
Dinikina Yu.V., Imyanitov E.N., Belogurova M.B., Nikitina I.L. Pharmacogenomics in pediatric oncology: possibility to overcome drug-induced toxicity of anticancer treatment. Lechaschi Vrach. 2023;(12):50-56. (In Russ.) https://doi.org/10.51793/OS.2023.26.12.007
JATS XML



















