Intestinal microflora shaping factors: emphasis on lipids
https://doi.org/10.51793/OS.2023.26.1.005
Abstract
The totality of microorganisms closely interacting with each other and with human cells is currently considered as another organ in the human body and is called the «microbiota». The functions of the intestinal microbiota are very diverse: anti-infective protection, modulation of the inflammatory and immune response, synthesis of compounds necessary for the body (for example, vitamins, shortchain fatty acids), participation in the digestion of a number of nutrients, as well as the regulation of intestinal motility, proliferation and differentiation of intestinal epithelial cells. It is the intestine that is the most densely populated biotope of the human body, and the population of microorganisms of the gastrointestinal tract is the most diverse and numerous. The settlement of the gastrointestinal tract begins in utero and enters the active phase after birth. Further progressive colonization of the child's digestive tract in the first months of life is provided by the mother's vaginal microflora during natural childbirth, breastfeeding, contact with the environment, as well as the consistent introduction of a variety of foods into the diet. In the study of L. Wang et al. (2021) analyzed the growth of several species of bacteria that dominate the intestines of infants by culturing on calcium palmitate media. This study was carried out by the Department of Medical Microbiology of the University of Groningen (Netherlands), the Medical Clinic of the University of Groningen and a goat milk formula company. Of all the tested bacteria, the growth of bifidobacteria and F. prausnitzii decreased when calcium palmitate was introduced into the medium, and the growth of Bifidobacterium infantis was completely stopped. Calcium palmitate reduced the thickness of the F.prausnitzii cell membrane, disrupted the fatty acid composition of the cell membrane and the function of membrane proteins involved in ion transport. The findings indicate that modification of the fat of formula-feeding formulas by the administrationof β-palmitate may promote the development of the gut microbiota in formula-fed infants by supporting the colonization of important beneficial bacteria at an early age.
About the Author
S. V. BelmerРоссия
Sergey V. Belmer, Dr. of Sci. (Med.), Professor of the Department of Hospital Pediatrics No. 2 of the Faculty of Pediatrics
1 Ostrovityanova str., Moscow, 117997
References
1. Intestinal microbiota in children: norm, disorders, correction. Pod red. S.V.Bel'mera i A.I. Khavkina. 2-ye izd. pererab. i dop. M.: ID «MEDPRAKTIKA-M», 2020, 472 s. ISBN 978-5-98803.
2. Guaraldi F., Salvatori G. Effect of breast and formula feeding on gut microbiota shaping in newborns // Front. Cell. Infect. Microbiol. 2012; 2: 94. DOI: 10.3389/fcimb.2012.00094. eCollection 2012.
3. Duranti S., Turroni F., Lugli GA., Milani C., Viappiani A., Mangifesta M., Gioiosa L., Palanza P., van Sinderen D., Ventura M. Genomic characterization and transcriptional studies of the starchutilizing strain bifidobacteriumadolescentis 22L // Appl Environ Microbiol. 2014; 80 (19): 6080-6090. DOI: 10.1128/AEM.01993-14.
4. Sela D. A. Bifidobacterial utilization of human milk oligosaccharides // Int J Food Microbiol. 2011; 149 (1): 58-64. DOI: 10.1016/j.ijfoodmicro.2011.01.025.
5. Hooper L., Littman D., Macpherson A. Interactions between the microbiota and the immune system // Science. 2012; 336 (6086): 1268-1273. DOI: 0.1126/science.1223490.
6. Fan W., Huo G., Li X., Yang L., Duan C., Wang T., Chen J. Diversity of the intestinal microbiota in different patterns of feeding infants by Illumina highthroughput sequencing // World J Microbiol Biotechnol. 2013; 29 (12): 2365-2372. DOI: 10.1007/s11274-013-1404-3.
7. Makarova Ye.G., Netrebenko O.K., Ukraintsev S.Ye. Human milk oligosaccharides: history of discovery, structure and protective functions. Pediatriya. 2018; 97 (4): 217-224.
8. Smilowitz J. T., Lebrilla C. B., Mills D. A., German J. B., Freeman S. L. Breast milk oligosaccharides: structure-function relationships in the neonate // Annu Rev Nutr. 2014; 34: 143-169. DOI: 10.1146/annurev-nutr-071813-105721.
9. Moro G. E., Mosca F., Miniello V., Fanaro S., Jelinek J., Stahl B., Boehm G. Effects of a new mixture of prebiotics on faecal flora and stools in term infants // Acta Paediatr Suppl. 2003; 91 (441): 77-79. DOI: 10.1111/j.1651-2227.2003.tb00650.x.
10. Boehm G., Fanaro S., Jelinek J., Stahl B., Marini A. Prebiotic concept for infant nutrition // Acta Paediatr Suppl. 2003; 91 (441): 64-67. DOI: 10.1111/j.1651-2227.2003.tb00648.x.
11. Jungersen M.., Wind A., Johansen E., Christensen J., Stuer-Lauridsen B., Eskesen D. The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12® // Microorganisms. 2014; 2: 92-110. DOI: 10.3390/microorganisms2020092FDA.
12. Food and Drug Administration. GRAS Notice Inventory. Agency Response Letter GRAS Notice No. GRN 000049. 2002.
13. Gil A., Ramirez M., Gil M. Role of long-chain polyunsaturated fatty acids in infant nutrition // Eur J Clin Nutr. 2003; 57 Suppl 1: S31-34. DOI: 10.1038/sj.ejcn.1601810.
14. Sellmayer A., Koletzko B. Long-chain polyunsaturated fatty acids and eicosanoids in infants–physiological and pathophysiological aspects and open questions // Lipids. 1999; 34 (2): 199-205. DOI: 10.1007/s11745-999-0354-z.
15. Innis S. M., Dyer R., Nelson C. M. Evidence that palmitic acid is absorbed as sn-2 monoacylglycerol from human milk by breast-fed infants // Lipids. 1994; 29 (8): 541-545. DOI: 10.1007/BF02536625.
16. Lopez-Lopez A., Castellote-Bargallo A. I., Campoy-Folgoso C., Rivero-Urgel M., Tormo-Carnice R., Infante-Pina D., Lopez-Sabater M. C. The influence of dietary palmitic acid triglyceride position on the fatty acid, calcium and magnesium contents of at term new born faeces // Early Hum Dev. 2001; 65 Suppl: S83-94. DOI: 10.1016/s0378-3782(01)00210-9.
17. Straarup E. M., Lauritzen L., Faerk J., Hoy C. E., Michaelsen K. F. The stereospecific triacylglycerol structure and fatty acid profiles of human milk and infant formulas // J Pediatr Gastroenterol Nutr. 2006; 42 (3): 293-299. DOI: 10.1097/01.mpg.0000214155.51036.4f.
18. Yaron S., Shachar D., Abramas L., Riskin A., Bader D., Litmanovitz I., Bar-Yoseph F., Cohen T., Levi L., Lifshitz Y., Shamir R., Shaoul R. Effect of high β-palmitate content in infant formula on the intestinal microbiota of term infants // J Pediatr Gastroenterol Nutr. 2013; 56 (4): 376-381. DOI: 10.1097/MPG.0b013e31827e1ee2.
19. Tomarelli R. M., Meyer B. J., Weaber J. R., Bernhart F. W. Effect of positional distribution on the absorption of the fatty acids of human milk and infant formulas // J Nutr. 1968; 95 (4): 583-590. DOI: 10.1093/jn/95.4.583.
20. Rogalska E., Ransac S., Verger R. Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases // J Biol Chem. 1990; 265 (33): 20271-6.
21. Small D. M. The effects of glyceride structure on absorption and metabolism // Annu Rev Nutr. 1991; 11: 413-434. DOI: 10.1146/annurev.nu.11.070191.002213.
22. Carnielli V. P., Luijendik I. H. T., van Goudoever J. B., Sulkers E. J., Boerla A. A., Degenhart H. J., Sauer P. J. Structural position and amount of palmitic acid in formulas: effects on fat, fatty acid, and mineral balance // Pediatr Gastroenterol Nutr. 1996; 23 (5): 553-560. DOI: 10.1097/00005176-199612000-00007.
23. Jensen R. G. Lipids in human milk // Lipids. 1999; 34 (12): 1243-1271. DOI: 10.1007/s11745-999-0477-2.
24. Manios Y., Karaglani E., Thijs-Verhoeven I., Vlachopapadopoulou E., Papazoglou A., Maragoudaki E., Manikas Z., Kampani T. M., Christaki I., Vonk M. M., Bos R., Parikh P. Effect of milk fat-based infant formulae on stool fatty acid soaps and calcium excretion in healthy term infants: Two doubleblind randomized cross-over trials // BMC Nutr. 2020; 6: 46. DOI: 10.1186/s40795-020-00365-4. eCollection 2020.
25. Havlicekova Z., Jesenak M., Banovcin P., Kuchta M. Beta-palmitate – a natural component of human milk in supplemental milk formulas // Nutr J. 2016; 15: 28. DOI: 10.1186/s12937-016-0145-1.
26. Bronsky J., Campoy C., Embleton N., Fewtrell M., Mis N. F., Gerasimidis K., Hojsak I., Hulst J., Indrio F., Lapillonne A., Molgaard C., Moltu S. J., Verduci E., Vora R., Domellöf M.; ESPGHAN Committee on Nutrition. Palm Oil and Beta-palmitate in Infant Formula: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition // J Pediatr Gastroenterol Nutr. 2019; 68 (5): 742-760. DOI: 10.1097/MPG.0000000000002307.
27. Kennedy K., Fewtrell M. S., Morley R., Abbott R., Quinlan P. T., Wells J. C. K., Bindels J. G. Double-blind, randomized trial of a synthetic triacylglycerol in formulafed term infants: effects on stool biochemistry, stool characteristics, and bone mineralization // Am J Clin Nutr. 1999; 70 (5): 920-927. DOI: 10.1093/ajcn/70.5.920.
28. Litmanovitz I., Davidson K., Eliakim A., Regev R. H., Dolfin T., Arnon S., Bar-Yoseph F., Goren F., Goren A., Lifshitz Y., Nemet D. High-beta-palmitate formula and bone strength in term infants: a randomized, double-blind, controlled trial // Calcif Tissue Int. 2013; 92 (1): 35-41. DOI: 10.1007/s00223-012-9664-8. Epub 2012 Nov 20.
29. De Goffau M. C., Luopajärvi K., Knip M., Ilonen J., Ruohtula T., Härkönen T., Orivuor L., Hakala S., Welling G. W., Harmsen H. J., Vaarala O. Fecal microbiota composition differs between children with β-cell autoimmunity and those without // Diabetes. 2013; 62 (4): 1238-1244. DOI: 10.2337/db12-0526.
30. Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L. G., Gratadoux J. J., Blugeon S., Bridonneau C., Furet J. P., Corthier G., Grangette C., Vasquez N., Pochart P., Trugnan G., Thomas G., Blottière H. M., Doré J., Marteau P., Seksik P., Langella P. Faecalibacteriumprausnitzii is an antiinflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients // Proc Natl Acad Sci U S A. 2008; 105 (43): 16731-16736. DOI: 10.1073/pnas.0804812105.
31. Wang L., Bravo-Ruiseco G., Happe R., He T., van Dijl J. M., Harmsen H. J. M. The effect of calcium palmitate on bacteria associated with infant gut microbiota // Microbiologyopen. 2021; 10 (3): e1187. DOI: 10.1002/mbo3.1187.
32. Yao M., Lien E. L., Capeding M. R., Fitzgerald M., Ramanujam K., Yuhas R., Nortington R., Lebumfacil J., Wang L., DeRusso P. A. Effects of term infant formulas containing high sn-2 palmitate with and without oligofructose on stool composition, stool characteristics, and bifidogenicity: a randomized, double-blind, controlled trial // J Pediatr Gastroenterol Nutr. 2014; 59 (4): 440-448. DOI: 10.1097/MPG.0000000000000443.
33. Lu P., Bar-Yoseph F., Levi L., Lifshitz Y., Witte-Bouma J., de Bruijn A. C. J. M., Korteland-van Male A. M., van Goudoever J. B., Renes I. B. High beta-palmitate fat controls the intestinal inflammatory response and limits intestinal damage in mucin Muc2 deficient mice // PLoS One. 2013; 8 (6): e65878. DOI: 10.1371/journal.pone.0065878.
Review
For citations:
Belmer S.V. Intestinal microflora shaping factors: emphasis on lipids. Lechaschi Vrach. 2023;(1):28-33. (In Russ.) https://doi.org/10.51793/OS.2023.26.1.005
JATS XML



















