Preview

Lechaschi Vrach

Advanced search

Possible benefits of whole goat milk in infant formulas for a healthy baby

https://doi.org/10.51793/OS.2021.24.9.002

Abstract

Goat milk protein-based formulas for feeding babies of the first year of life have been used since the 80s of the last century. A new generation of infant formula is made using whole goat milk, in which the natural ratio of whey protein: casein is maintained at 20:80, milk fat and carbohydrate components are preserved, which allows translating the benefits of goat milk into an adapted formula to approximate the composition of breast milk (BM). Protein and milk fat obtained from whole goat milk are highly digestible due to the structural and compositional characteristics: protein with low αs1-casein forms a soft clot in the stomach, which facilitates its easy diges- tion, and the fat globules of goat milk are smaller and larger surface area comparable to BM. Goat milk fat in the formula is the source of the main donor energy – fatty acids with a short and medium carbon chain length, β-keto acids, and palmitic acid in the sn-2-position in the glycerol molecule. In the composition of the formula during the production process, the goat's milk fat globules membranes (MFGM) are preserved. The components of MFGM have different physiological functions. MFGM proteins contribute to the development of intestinal microbiota, immune functions, have antimicrobial and antiviral effects. Lipids MFGM improve the barrier functions of the intestinal epithelium, maintain its structural integrity, and also participate in the construction of cell membranes of the mucous membrane of the gastrointestinal tract and the rapidly developing nervous tissue of the child. In whole goat milk, oligosaccharides (OS) are present in a smaller amount and variety in comparison with BM, which dictates the need to supplement the infant formula with OS or prebiotics that repeat the functions of BM OG. Clinical studies have shown evidence of the safety and clinical efficacy of using whole goat milk formulas in promoting the proper growth and development of infants in their first months of life.

About the Author

O. N. Komarova
Pirogov Russian National Research Medical University
Россия

Moscow



References

1. Prosser C. G. Compositional and functional characteristics of goat milk and relevance as a base for infant formula // J FoodSci. 2021; 86 (2): 257-265.

2. Hodgkinson A. J., Wallace O. A. M., Boggs I., Broadhurst M., Prosser C. G. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro // Food Chem. 2017; 245: 275-281.

3. EFSA Panel on Dietetic Products, Nutrition and Allergies Scientific opinion on the suitability of goat milk protein as a source of protein in infant formulae and in follow-on formulae // EFSA J. 2012; 10: 2603.

4. Lönnerdal B. Infant formula and infant nutrition: Bioactive proteins of human milk and implications for composition of infant formulas // Am. J. Clin. Nutr. 2014; 99: 712-717.

5. Delplanque B., Gibson R., Koletzko B., Lapillonne A., Strandvik B. Lipid quality in infant nutrition: Current knowledge and future opportunities // J. Pediatr. Gastroenterol. Nutr. 2015; 61: 8-17.

6. Grant C., Rotherham B., Sharpe S., Scragg R., Thompson J., Andrews J., Wall C., Murphy J., Lowry D. Randomized, double-blind comparison of growth in infants receiving goat milk formula versus cow milk infant formula // J. Paediatr. Child Health. 2005; 41: 564-568.

7. Zhou S. J., Sullivan T., Gibson R. A., Lönnerdal B., Prosser C. G., Lowry D. J., Makrides M. Nutritional adequacy of goat milk infant formulas for term infants: A double-blind randomised controlled trial // Br. J. Nutr. 2014; 111: 1641-1651.

8. Selvaggi М., Laudadio V., Dario C., Tufarelli V. Major proteins in goat milk: an updated overview on genetic variability // Mol Biol Rep. 2014; 41: 1035-1048.

9. Farrell H. M., Jimenez-Flores R., Bleck G. T., Brown E. M. et al. Nomenclature of the proteins of cows’ milk-sixth revision // J. Dairy Sci. 2004; 87: 1641-1674.

10. Masoodi T. A., Shafi G. Analysis of casein alpha S1 & S2 proteins from different mammalian species // Bioinformation. 2010; 4 (9): 430-435.

11. Marletta D., Criscione A., Bordonaro S., Guastella A. M., D’Urso G. Casein polymorphism in goat’s milk // Lait. 2007; 87: 491-504.

12. Ceballos L. S., Morales E. R., Advare G. T., Castro J. D., Marinez L. P., Sampelayo M. R. S. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology // Journal of Food Compositionand Analysis. 2009; 22: 322-329.

13. Wang Y., Eastwood B., Yang Z., de Campo L., Knott R., Prosser C., Hemar Y. Rheological and structural characterization of acidified skim milks and infant formulae made from cow and goat milk // Food Hydrocolloids. 2019; 96: 161-170.

14. Hodgkinson A. J., McDonald N. A., Krivits L. J., Hurford D. R., Fahey S., Prosser C. Allergic responses induced by goat milk alphaS1-casein in a murine model of gastrointestinal atopy // Journal of Dairy Science. 2012; 95: 83-90.

15. Vita D., Passalacqua G., Di Pasquale G., Caminiti L., Crisafulli G., Rulli I., Pajno G. B. Ass’s milk in children with atopic dermatitis and cow’s milk allergy: crossover comparison with goat’s milk // Pediatr Allergy Immunol. 2007; 18: 594-598.

16. Koletzko S., Niggemann B., Arato A., Dias J. A., Heuschkel R., Husby S., Mearin M. L., Papadopoulou A., Ruemmele F. M., Staiano A., Schäppi M. G., Vandenplas Y. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines // J Pediatr Gastroenterol Nutr. 2012; 55: 221-229.

17. Gallier S., Vocking K., Post J. A., Van De Heijning B., Acton D., Van Der Beek E. M., Van Baalen T. A novel infant milk formula concept: Mimicking the human milk fat globule structure // Colloid Surf. B. 2015; 136: 329-339.

18. Tomotake H., Okuyama R., Katagiri M. et al. Comparison between Holstein cow’s milk and Japanese-Saanen goat’s milk in fatty acid composition, lipid digestibility and protein profile // Biosci. Biotechnol. Biochem. 2006; 11 (70): 2771-2774.

19. Heid H. W., Keenan T. W. Intracellular origin and secretion of milk fat globules // Eur J Cell Biol. 2005; 84 (2-3): 245-58.

20. El-loly M. M. Composition, Properties and Nutritional Aspects of Milk Fat Globule Membrane – a Review // Pol. J. Food Nutr. Sci. 2011; 61 (1): 7-32.

21. Bernard L., Bonnet M., Delavaud C., Delosiere M., Ferlay A., Fougere H., Graulet B. Milk fat globule in ruminant: Major and minor compounds, nutritional regulation and differences among species // Eur. J. Lipid Sci. Technol. 2018; 120: 1700039.

22. Li F., Wu S. S., Berseth C. L., Harris C. L., Richards J. D., Wampler J. L., Zhuang W., Cleghorn G., Rudolph C. D., Liu B., et al. Improved Neurodevelopmental outcomes associated with bovine milk fat globule membrane and lactoferrin in infant formula: A randomized, controlled trial // J. Pediatr. 2019; 215: 24-31.

23. Hernell O., Timby N., Domellöf M., Lönnerdal B. Clinical benefits of milk fat globule membranes for infants and children // J. Pediatr. 2016; 173: S60-S65.

24. Cebo C., Caillat H., Bouvier F., Martin P. Major proteins of the milk fat globule membrane // J. Dairy Sci. 2010; 93: 868-876.

25. Singh H., Gallier S. Nature’s complex emulsion: The fat globules of milk // Food Hydrocolloid. 2017; 68: 81-89.

26. Molinero N., Ruiz L., Sanchez B., Margolles A., Delgado S. Intestinal bacteria interplay with bile and cholesterol metabolism: Implications on host physiology // Front. Physiol. 2019; 10: 185.

27. Dingess K. A., Valentine C. J., Ollberding N. J., Davidson B. S., Woo J. G., Summer S., Peng Y. M., Guerrero M. L., Ruiz-Palacios G. M., Ran-Ressler R. R., et al. Branched-chain fatty acid composition of human milk and the impact of maternal diet: The Global Exploration of Human Milk (GEHM) Study // Am. J. Clin. Nutr. 2017; 105: 177-184.

28. Chilliard Y., Rouel J., Leroux M. Goat’s alpha-s1 casein genotype influences its milk fatty acid composition and delta-9 desaturation ratios // Anim. Feed Sci. Technol. 2006; 131 (3): 474-487.

29. Silanikove N., Leitner G., Merin U., Prosser C. Recent advances in exploiting goat’s milk: quality, safety and production aspects // Small Rumin. Res. 2010; 89: 110-124.

30. Coleman R. A., Lewin T. M., Muoio D. M. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis // Annu. Rev. Nutr. 2000; 20: 77-103.

31. Dong X., Zhou S., Mechref Y. LC-MS/MS analysis of emethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples // Electrophoresis. 2016; 37: 1532-1548.

32. Meyrand M., Dallas D. C., Caillat H., Bouvier F. et al. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize αs1-casein // Small Ruminant Res. 2013; 113 (2-3): 411-420.

33. Gallier S., Tolenaars L., Prosser C. Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula // Nutrients. 2020; 12 (11): 3486.

34. Hageman J. J. J., Danielsen M., Nieuwenhuizen A. G., Feitsma A. L., Dalsgaard T. K. Comparison of bovine milk fat and vegetable fat for infant formula: Implications for infant health // Int. Dairy J. 2019; 92: 37-49.

35. Zheng L., Fleith M., Giuffrida F., O’Neill B. V., Schneider N. Dietary polar lipids and cognitive development: A narrative review // Adv. Nutr. 2019; 10: 1163-1176.

36. Innis S. M. Palmitic acid in early human development // Crit. Rev. Food Sci. Nutr. 2015; 56: 1952-1959.

37. Bronsky J., Campoy C., Embleton N., Fewtrell M., Mis N. F., Gerasimidis K., Hojsak I., Hulst J., Indrio F., Lapillonne A., et al. Palm Oil and Beta-palmitate in Infant Formula: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition // J. Pediatr. Gastroenterol. Nutr. 2019; 68: 742-760.

38. Delplanque B., Gibson R., Koletzko B., Lapillonne A., Strandvik B. Lipid quality in infant nutrition: Current knowledge and future opportunities // J. Pediatr. Gastroenterol. Nutr. 2015; 61: 8-17.

39. Prentice P. M., Schoemaker M. H., Vervoort J., Hettinga K., Lambers T. T., van Tol E. A. F., Acerini C. L., Olga L., Petry C. J., Hughes I. A., et al. Human milk short-chain fatty acid composition is associated with adiposity in infants // J. Nutr. 2019; 149: 716-722.

40. Leong А., Liu Z., Almshawit H., Zisu B., Pillidge C. et al. Oligosaccharides in goats’ milk-based infant formula and their prebiotic and anti-infection properties // British Journal of Nutrition. 2019; 122 (4): 441-449.

41. Quinn E. M., Slattery H., Thompson A. P., Kilcoyne M., Joshi L., Hickey R. M. Mining milk for factors which increase the adherence of Bifidobacterium longum subsp. infantis to intestinal cells // Foods. 2018; 7 (12): 196.

42. Lee H., Padhi E., Hasegawa Y., Larke J., Parenti M., Wang A., Hernell O., Lönnerdal B., Slupsky C. Compositional dynamics of the milk fat globule and its role in infant development // Front. Pediatr. 2018; 6: 313.

43. Komarova O. N. Influence of long-chain polyunsaturated fatty acids on child development // Meditsinskiy sovet. 2020; 10: 9-15.

44. He X., Parenti M., Grip T., Domellöf M., Lönnerdal B., Hernell O., Timby N., Slupsky C. M. Metabolic phenotype of breast-fed infants, and infants fed standard formula or bovine supplemented formula: A randomized controlled trial // Sci. Rep. 2019; 9: 339.


Review

For citations:


Komarova O.N. Possible benefits of whole goat milk in infant formulas for a healthy baby. Lechaschi Vrach. 2021;(9):9-14. (In Russ.) https://doi.org/10.51793/OS.2021.24.9.002

Views: 249

JATS XML

ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)