Preview

Лечащий Врач

Расширенный поиск

Ожирение и микробиота кишечника

Полный текст:

Аннотация

Представлен обзор современной литературы о роли кишечной микробиоты в патогенезе ожирения. Рассмотрены новые пути воздействия на метаболизм кишечной микробиоты и продуктов ее ферментации: через дисбаланс Firmicutes и Bacteroidetes, с помощью влияния короткоцепочечных жирных кислот, а также в результате жизнедеятельности метаногенных археев.

Об авторах

В. А. Ахмедов
ФГБОУ ВО ОмГМУ МЗ РФ
Россия


А. А. Голоктионова
ФГБОУ ВО ОмГМУ МЗ РФ
Россия


А. С. Исаева
ФГБОУ ВО ОмГМУ МЗ РФ
Россия


Список литературы

1. Castaner O., Goday A., Park Y. M. et al. The Gut Microbiome Profile in Obesity: A Systematic Review // Int J Endocrinol. 2018. Vol. 2018. P. 9.

2. Obesity and Overweight [Электронный ресурс]. URL: http://omsk-https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (дата обращения 18/01/2019).

3. Angelantonio E. Di., Bhupathiraju Sh. N., Wormser D. et al. Body-mass index and all-cause mortality: individual participant- data meta-analysis of 239 prospective studies in four continents // The Lancet. 2016. Vol. 388 (10046). P. 776-786.

4. Le Chatelier E., Nielsen T., Qin J. et al. Richness of human gut microbiome correlates with metabolic markers // Nature. 2013. Vol. 500 (7464). P. 541-546.

5. Tang W. H. W., Kitai T., Hazen S. L. Gut microbiota in cardiovascular health and disease // Circulation Research. 2017. Vol. 120 (7). P. 1183-1196.

6. Million M., Richet H., Carrieri P. et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii // International Journal of Obesity. 2012. Vol. 36 (6). P. 817-825.

7. Anh? F. F. Varin T. V., Schertzer J. D. et al. The gut microbiota as a mediator of metabolic benefits after bariatric surgery // Canadian Journal of Diabetes. 2017. Vol. 41 (4). 439-447.

8. Turnbaugh P. J., Ley R. E., Hamady M. et al. The human microbiome project: exploring the microbial part of ourselves in a changing world // Nature. 2007. Vol. 449 (7164). P. 804-810.

9. Thomas S. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists // Cancer Res. 2017. Vol. 77 (8). P. 1783-1812.

10. Cani P. D., Osto M., Geurts L. et al. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity // Gut Microbes. 2012. Vol. 3 (4). P. 279-288.

11. Million M., Angelakis E., Maraninchi M. et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli // Int J Obes (Lond). 2013. Vol. 37 (11). P. 1460-1466.

12. Backhed F., Ding H., Wang T. et al. The gut microbiota as an environmental factor that regulates fat storage // ProcNatl Acad Sci USA. 2004. Vol. 101 (44). P. 15718-15723.

13. Gaci N., Borrel G., Tottey W. et al. Archaea and the human gut: new beginning of an old story // World J Gastroenterol. 2014. Vol. 20 (43). P. 16062-16078.

14. Turnbaugh P. J., Ley R. E., Hamady M. et al. The human microbiome project: exploring the microbial part of ourselves in a changing world // Nature. 2007. Vol. 449 (7164). P. 804-810.

15. Angelakis E., Armougom F., Carri?re F. et al. A metagenomic investigation of the duodenal microbiota reveals links with obesity // PLoS One. 2013. Vol. 10 (9). e0137784.

16. Lin S. W., Freedman N. D., Shi J. et al. Beta-diversity metrics of the upper digestive tract microbiome are associated with body mass index // Obesity. 2015. Vol. 23 (4). P. 862-869.

17. Ley R. E. B?ckhed F., Turnbaugh P. et al. Obesity alters gut microbial ecology // Proc Natl Acad Sci USA. 2005. Vol. 102 (31). P. 11070-11075.

18. Ley R. E., Turnbaugh P. J., Klein S. et al. Microbial ecology: human gut microbes associated with obesity // Nature. 2006. Vol. 444 (7122). P. 1022-1023.

19. Mathur R., Amichai M., Chua K. S. et al. Methane and hydrogen positivity on breath test is associated with greater body mass index and body fat // J Clin Endocrinol Metab. 2013. Vol. 198 (1). P. 698-702.

20. McNeil N. I. et al. The contribution of the large intestine to energy supplies in man // Am J Clin Nutr. 1984. Vol. 378 (39). P. 338-342.

21. Fernandes J., Su W., Rahat-Rozenbloom S. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans // Nutr Diabetes. 2014. Vol. 4 (6). Р. 121.

22. Schwiertz A., Taras D., Sch?fer K. et al. Microbiota and SCFA in lean and overweight healthy subjects // Obesity (Silver Spring). 2010. Vol. 18 (5). Р. 190-195

23. Gao Z., Yin J., Zhang J. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice // Diabetes. 2009. Vol. 58 (6). Р. 1509-1517.

24. Lin H. V., Frassetto A., Edward J. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms // PLoS One. 2012. Vol. 7 (4). e35240.

25. Besten D. G., Bleeker A., Gerding A. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation // Diabetes. 2015. Vol. 68 (4). P. 2398-2408.

26. Tolhurst G., Heffron H., Lam Y. S. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2 // Diabetes. 2012. Vol. 61 (2). P. 364-371.

27. Kopp H. P., Kopp C. W., Festa A. et al. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese Patients // Arterioscler Thromb Vasc Biol. 2003. Vol. 23 (2). P. 1042-1047.

28. Cani P. D., Amar J., Iglesias M. A. et al. Metabolic endotoxemia initiates obesity and insulin resistance // Diabetes. 2007. Vol. 56 (7). P. 1761-1772.

29. Mathur R., Kim G., Morales W. et al. Intestinal Methanobrevibacter smithii but not total bacteria is related to diet-induced weight gain in rats // Obesity (Silver Spring). 2013. Vol. 2 (4). P. 748-754.

30. Samuel B. S., Elizabeth E. H., Jill K. Manchester et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut // Proc Natl Acad Sci USA. 2007. Vol. 104 (25). P. 679-683.

31. Patil D. P., Dhotre D. P., Chavan S. G. et al. Molecular analysis of gut microbiota in obesity among Indian individuals // J Biosci. 2012. Vol. 37 (4). P. 647-657.

32. Zhang H., DiBaise J. K., Zuccolo A. et al. Human gut microbiota in obesity and after gastric bypass // Proc Natl Acad Sci USA. 2009. Vol. 106 (7). P. 2365-2370.

33. Gibson G. R., Cummings J. H., Macfarlane G. T. et al. Alternative pathways for hydrogen disposal during fermentation in the human colon // Gut. Vol. 31 (6). P. 679-683.

34. Wang Y. C., McPherson K., Marsh T. et al. Health and economic burden of the projected obesity trends in the USA and the UK // Lancet. 2011. Vol. 378 (7464). P. 541-546.

35. Cesario V., Di Rienzo T. A., Campanale M. et al. Methane intestinal production and poor metabolic control in type I diabetes complicated by autonomic neuropathy // Minerva Endocrinol. 2014. Vol. 39 (3). Р. 201-207.


Рецензия

Для цитирования:


Ахмедов В.А., Голоктионова А.А., Исаева А.С. Ожирение и микробиота кишечника. Лечащий Врач. 2019;(7):68.

For citation:


Akhmedov V.A., Goloktionova A.A., Isaeva A.S. Obesity and intestinal microbiota. Lechaschi Vrach. 2019;(7):68. (In Russ.)

Просмотров: 28


Creative Commons License
Контент доступен под лицензией Attribution-NonCommercial-NoDerivatives 4.0 International.


ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)