Preview

Лечащий Врач

Расширенный поиск

Генетические аспекты формирования неалкогольной жировой болезни печени

Полный текст:

Аннотация

Прогрессирование неалкогольной жировой болезни печени (НАЖБП) определяется генетической восприимчивостью, факторами окружающей среды, образом жизни и особенностями метаболического синдрома, многие из которых пересекаются с гепатоцеллюлярной карциномой. Тем не менее многофакторная природа НАЖБП и ограниченное количество достаточно мощных исследований являются одними из текущих ограничений для подтвержденных биомаркеров клинической полезности. Дальнейшие исследования, включающие связи между циркадной регуляцией и печеночным метаболизмом, могут представлять дополнительное направление в поиске прогностических биомаркеров прогрессирования заболеваний печени и результатов лечения.

Об авторах

В. А. Ахмедов
ФГБОУ ВО ОмГМУ МЗ РФ
Россия


Т. И. Меликов
ФГБОУ ВО ОмГМУ МЗ РФ
Россия


Список литературы

1. Masarone M., Federico A., Abenavoli L. et al. Non alcoholic fatty liver: epidemiology and natural history // Rev Recent Clin Trials. 2014; 9: 126-133.

2. Loomba R., Sanyal A. J. The global NAFLD epidemic // Nat Rev Gastroenterol Hepatol. 2013; 10: 686-690.

3. Brunt E. M. Pathology of nonalcoholic fatty liver disease // Nat Rev Gastroenterol Hepatol. 2010; 7: 195-203.

4. Adams L. A., Lymp J. F., St. Sauver J. et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study // Gastroenterology. 2005; 129: 113-121.

5. Patton H. M., Sirlin C., Behling C. et al. Pediatric nonalcoholic fatty liver disease: a critical appraisal of current data and implications for future research // J Pediatr Gastroenterol Nutr. 2006; 43: 413-427.

6. Schwimmer J. B., Newton K. P., Awai H. I. et al. Paediatric gastroenterology evaluation of overweight and obese children referred from primary care for suspected non-alcoholic fatty liver disease // Aliment Pharmacol Ther. 2013; 38: 1267-1277.

7. Schwimmer J. B., Pardee P. E., Lavine J. E. et al. Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease // Circulation. 2008; 118: 277-283.

8. Williams C. D., Stengel J., Asike M. I. et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study // Gastroenterology. 2011; 140: 124-131.

9. Vernon G., Baranova A., Younossi Z. M. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults // Aliment Pharmacol Ther. 2011; 34: 274-285.

10. Donnelly K. L., Smith C. I., Schwarzenberg S. J. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease // J. Clin. Invest. 2005; 115: 1343-1351.

11. Kohjima M., Enjoji M., Higuchi N. et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease // Int. J. Mol. Med. 2007; 20: 351-358.

12. Yang Z. X., Shen W., Sun H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease // Hepatol. Int. 2010; 4: 741-748.

13. Dentin R., Benhamed F., Hainault I. et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice // Diabetes. 2006; 55: 2159-2170.

14. Naik A., Beliс A., Zanger U. M. et al. Molecular interactions between NAFLD and xenobiotic metabolism // Front. Genet. 2013; 4: 2.

15. Dubuquoy C., Robichon C., Lasnier F. et al. Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes // J. Hepatol. 2011; 55: 145-153.

16. Basantani M. K., Sitnick M. T., Cai L. et al. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome // J. Lipid Res. 2011; 52: 318-329.

17. Kotronen A., Johansson L. E., Johansson L. M. et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans // Diabetologia. 2009; 52: 1056-1060.

18. Speliotes E. K., Yerges-Armstrong L. M., Wu J. et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease // Hepatology. 2010; 51: 1209-1217.

19. Kawaguchi T., Sumida Y., Umemura A. et al. Japan Study Group of Nonalcoholic Fatty Liver, Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese // PLoS One. 2012; 7: e38322.

20. Zain S. M., Mohamed R., Mahadeva S. et al. A multi-ethnic study of a PNPLA3 gene variant and its association with disease severity in non-alcoholic fatty liver disease // Hum. Genet. 2012; 131 (7): 1145-1152.

21. Takeuchi Y., Ikeda F., Moritou Y. et al. The impact of patatin-like phospholipase domain-containing protein 3 polymorphism on hepatocellular carcinoma prognosis // J. Gastroenterol. 2012; 48 (3): 405-412.

22. Namikawa C., Shu-Ping Z., Vyselaar J. R. et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis // J. Hepatol. 2004; 40: 781-786.

23. Al-Serri A., Anstee Q. M., Valenti L. et al. The sod2 c47t polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studie // J. Hepatol. 2011; 56 (2): 448-454.

24. Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors // Cytokine Growth Factor Rev. 2003; 14: 185-191.

25. Antuna-Puente B., Feve B., Fellahi S. et al. Adipokines: the missing link between insulin resistance and obesity // Diabetes Metab. 2008; 34: 2-11.

26. Valenti L., Fracanzani A. L., Dongiovanni P. et al. Tumor necrosis factor alpha promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease // Gastroenterology. 2002; 122: 274-280.

27. Trujillo-Murillo K., Bosques-Padilla F. J., Calderуn-Lozano I. et al. Association of tumor necrosis factor ? and manganese superoxide dismutase polymorphisms in patients with non-alcoholic steatohepatitis from northeast Mexico // Open Hepatol. J. 2011; 3: 1-6.

28. Noga A. A., Zhao Y., Vance D. E. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins // J. Biol. Chem. 2002; 277: 42358-42365.

29. Karavia E. A., Papachristou D. J., Kotsikogianni I. et al. Deficiency in apolipoprotein E has a protective effect on diet-induced nonalcoholic fatty liver disease in mice // FEBS J. 2011; 278 (17): 3119-3129.

30. Sazci A., Akpinar G., Aygun C. et al. Association of apolipoprotein E polymorphisms in patients with non-alcoholic steatohepatitis // Dig. Dis. Sci. 2008; 53: 3218-3224.

31. Holland W. L., Miller R. A., Wang Z. V. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin // Nat. Med. 2011; 17: 55-63.

32. Musso G., Gambino R., De Michiel F. et al. Adiponectin gene polymorphisms modulate acute adiponectin response to dietary fat: possible pathogenetic role in NASH // Hepatology. 2008; 47: 1167-1177.

33. Kadowaki T., Yamauchi T. Adiponectin and adiponectin receptors // Endocr. Rev. 2005; 26: 439-451.

34. Rui L., Yuan M, Frantz D. et al. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2 // J. Biol. Chem. 2002; 277: 42394-42398.

35. Vanni E., Bugianesi E., Kotronen A. et al. From the metabolic syndrome to NAFLD or vice versa? // Dig. Liver Dis. 2010; 42: 320-330.

36. Takahashi Y. Essential roles of growth hormone (GH) and insulin-like growth factor-I (IGF-I) in the liver // Endocr. J. 2012; 59: 955-962.

37. Nishizawa H., Takahashi M., Fukuoka H. et al. GH-independent IGF-I action is essential to prevent the development of nonalcoholic steatohepatitis in a GH-deficient rat model // Biochem. Biophys. Res. Commun. 2012; 423: 295-300.

38. Hong J. W., Kim J. Y., Kim Y. E. et al. Metabolic parameters and nonalcoholic fatty liver disease in hypopituitary men // Horm. Metab. Res. 2011; 43: 48-54.

39. Takahashi Y., Iida K., Takahashi K. et al. Growth hormone reverses nonalcoholic steatohepatitis in a patient with adult growth hormone deficiency // Gastroenterology. 2012; 132: 938-943.

40. Korenсiс A., Bordyugov G., Ko?ir R. et al. The interplay of cis-regulatory elements rules circadian rhythms in mouse liver // PLoS One. 2012; 7: e46835.

41. Valekunja U. K., Edgar R. S., Oklejewicz M. et al. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription // Proc. Natl. Acad. Sci. U.S.A. 2013; 110 (4): 1554-1559.

42. Green C. B., Takahashi J. S., Bass J. The meter of metabolism // Cell. 2008; 134: 728-742.

43. Aсimoviс J., Ko?ir R., Kastelec D. et al. Circadian rhythm of cholesterol synthesis in mouse liver: a statistical analysis of the post-squalene metabolites in wild-type and Crem-knock-out mice // Biochem. Biophys. Res. Commun. 2011; 408: 635-641.

44. Ko?ir R., Zmrzljak U. P., Bele T. et al. Circadian expression of steroidogenic cytochromes P450 in the mouse adrenal gland-involvement of cAMP-responsive element modulator in epigenetic regulation of Cyp17a1 // FEBS J. 2012; 279: 1584-1593.

45. Sahar S., Sassone-Corsi P. Metabolism and cancer: the circadian clock connection // Nat. Rev. Cancer. 2009; 89: 886-896.

46. Hirota T., Lee J. W., St John P. C. et al. Identification of small molecule activators of cryptochrome // Science. 2012; 337: 1094-1097.

47. Barclay J. L., Husse J., Bode B. et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork // PLoS One. 2012; 7: e37150.

48. Husse J., Hintze S. C., Eichele G. et al. Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption // PLoS One. 2012; 7: e52983.

49. Froy O. The circadian clock and metabolism // Clin. Sci (Lond.). 2011; 120: 65-72.

50. Dochi M., Suwazono Y., Sakata K. et al. Shift work is a risk factor for increased total cholesterol level: a 14-year prospective cohort study in 6886 male workers // Occup. Environ. Med. 2009; 66: 592-597.

51. Konturek P. C., Brzozowski T., Konturek S. J. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options // J. Physiol. Pharmacol. 2011; 62: 591 599.

52. Chen P., Kakan X., Zhang J. Altered circadian rhythm of the clock genes in fibrotic livers induced by carbon tetrachloride // FEBS Lett. 2010; 584: 1597-1601.

53. Filipski E., Subramanian P., Carriиre J. et al. Circadian disruption accelerates liver carcinogenesis in mice // Mutat. Res. 2009; 680: 95-105.

54. Sookoian S., Castaсo G., Gemma C. et al. Common genetic variations in CLOCK transcription factor are associated with nonalcoholic fatty liver disease // World J. Gastroenterol. 2007; 13: 4242-4248.


Рецензия

Для цитирования:


Ахмедов В.А., Меликов Т.И. Генетические аспекты формирования неалкогольной жировой болезни печени. Лечащий Врач. 2019;(8):28.

For citation:


Akhmedov V.A., Melikov T.I. Genetic aspects of non-alcoholic fatty liver disease development. Lechaschi Vrach. 2019;(8):28. (In Russ.)

Просмотров: 27


Creative Commons License
Контент доступен под лицензией Attribution-NonCommercial-NoDerivatives 4.0 International.


ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)