Preview

Lechaschi Vrach

Advanced search

Participation of ERM proteins in the regulation of the cell cytoskeleton and the role of the moesin protein in the path ogenesis of adenomyosis

https://doi.org/10.26295/OS.2020.95.41.002

Abstract

Data on new biological markers of adenomyosis are presented. The role of ERM proteins in the development and progression of endometriosis is described. An in-depth study of the structure, mass, localization of ERM proteins and their functional relationship with the signaling pathways Rho, RhoA, Rhoc, RhocK1, leading to increased migration and adhesion of ectopic endometrial cells. It describes which cell adhesion proteins are involved in binding to the moesin protein domain and function as crosslinkers between membrane proteins and the cytoskeleton. Data on the regulation of the function of ERM proteins as crosslinkers are presented. In order to study the functional role of ERM proteins, the phenotypes of mice with the presence and removal of the protein moesin, radixin and ezrin separately were described. Various methods of studying the expression of ERM proteins in ectopic and eutopic endometrial cells are considered. The role of the protein moesin and ezrin in the pathogenesis of adenomyosis and in the progression of the pathological process is described separately. The expression of moesin in ectopic endometrial cells in adenomyosis, leading to the progression of the pathological process, was studied. Markers involved in phosphorylation of the moesin protein and markers that inhibit moesin activity are described, which favorably affects the outcome of the disease. The expression of the ezrin protein in ectopic endometrial cells in the proliferative and secretory phases of the menstrual cycle was studied, its role in the development and progression of adenomyosis was described, as well as markers that activate and inhibit this protein were studied. It describes the forms of cancer diseases in which the expression of ERM system proteins is increased, which contributes to more active metastasis of cancer cells and leads to a worse prognosis of the disease. We have studied which biological markers inhibit the activity of ERM proteins, which helps to reduce cancer cell metastasis. 

About the Authors

L. V. Adamyan
Moscow State Medical Stomatological University n. a. A. I. Evdokimov, Ministry of Healthcare of the Russian Federation
Россия

Moscow



L. M. Manukyan
Moscow State Medical Stomatological University n. a. A. I. Evdokimov, Ministry of Healthcare of the Russian Federation
Россия

Moscow



V. O. Zayratyants
Moscow State Medical Stomatological University n. a. A. I. Evdokimov, Ministry of Healthcare of the Russian Federation
Россия

Moscow



K. N. Arslanyan
Moscow State Medical Stomatological University n. a. A. I. Evdokimov, Ministry of Healthcare of the Russian Federation
Россия

Moscow



O. N. Loginova
Moscow State Medical Stomatological University n. a. A. I. Evdokimov, Ministry of Healthcare of the Russian Federation
Россия

Moscow



References

1. Tsukita S., Yonemura S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins // J. Biol. Chem. 1999; 274: 34507-34510.

2. Ivetic A., Ridley A. J. Ezrin/radixin/moesin proteins and Rho - GTPase signaling in leucocytes // Immunology. 2004; 112: 165-176.

3. Bretscher A., Edwards K., Fehon R. G. ERM proteins and merlin: integrators at the cell cortex / Nat. Rev. Mol. Cell Biol. 2002; 3: 586-599.

4. Pearson M. A., Reczek D., Bretscher A., Karplus P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain // Cell. 2000; 101: 259-270.

5. Smith W. J., Nassar N., Bretscher A., Cerione R. A., Karplus P. A. Structure of the active N- erminal domain of ezrin. Conformational and mobility changes identify keystone interactions // J. Biol. Chem. 2003; 278: 4949-4956.

6. Yonemura S., Hirao M., Doi Y., Takahashi N., Kondo T., Tsukita S., Tsukita S. ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2 // J. Cell Biol. 1998; 140: 885-895.

7. D’Angelo R., Aresta S., Blangy A., Del Maestro L., Louvard D., Arpin M. Interaction of ezrin with the novel guanine nucleotide exchange factor PLEKHG6 promotes RhoG-dependent apical cytoskeleton rearrangements in epithelial cells // Mol. Biol. Cell. 2007; 18: 4780-4793.

8. Andre’oli C., Martin M., Le Borgne R., Reggio H., Mangeat P. Ezrin has properties to self-associate at the plasma membrane // J. Cell Sci. 1994; 107: 2509-2521.

9. Gary R., Bretscher A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site // Mol. Biol. Cell. 1995; 6: 1061-1075.

10. Berryman M., Franck Z., Bretscher A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells // J. Cell Sci. 1993; 105: 1025-1043.

11. Ingraffea J., Reczek D., Bretscher A. Distinct cell type-specific expression of scaffolding proteins EBP50 and E3KARP: EBP50 is generally expressed with ezrin in specific epithelia, whereas E3KARP is not // Eur. J. Cell Biol. 2002; 81: 61-68.

12. Amieva M. R., Furthmayr H. Subcellular localization of moesin in dynamic filopodia, retraction fibers, and other structures involved in substrate exploration, attachment, and cell-cell contacts // Exp. Cell Res. 1995; 219: 180-196.

13. Yang Q., Onuki R., Nakai C., Sugiyama Y. Ezrin and radixin both regulate the apical membrane localization of ABCC2 (MRP2) in human intestinal epithelial Caco-2 cells // Exp. Cell Res. 2007; 313: 3517-3525.

14. Magro F., Fraga S., Soares-da-Silva P. Interferon-gamma-induced STAT1-mediated membrane retention of NHE1 and associated proteins ezrin, radixin and moesin in HT-29 cells // Biochem. Pharmacol. 2005; 70: 1312-1319.

15. Woodward A. M., Crouch D. H. Cellular distributions of the ERM proteins in MDCK epithelial cells: regulation by growth and cytoskeletal integrity // Cell Biol. Int. 2001; 25: 205-213.

16. Yonemura S., Tsukita S., Tsukita S. Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins // J. Cell Biol. 1999; 145: 1497-1509.

17. Luciani F., Molinari A., Lozupone F., Calcabrini A., Lugini L., Stringaro A., Puddu P., Arancia G., Cianfriglia M., Fais S. P-glycoprotein-actin association through ERM family proteins: a role in P-glycoprotein function in human cells of lymphoid origin // Blood. 2002; 99: 641-648.

18. S. Tsukita S. Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout // J. Biol. Chem. 1999; 274: 2315-2321.

19. Hashimoto S., Amaya F., Matsuyama H., Ueno H., Kikuchi S., Tanaka M., Watanabe Y., Ebina M., Ishizaka A., Tsukita S., Hashimoto S. Dysregulation of lung injury and repair in moesin-deficient mice treated with intratracheal bleomycin // Am. J. Physiol. Lung Cell. Mol. Physiol. 2008; 295: L566-L574.

20. Liu X., Yang T., Suzuki K., Tsukita S., Ishii M., Zhou S., Wang G., Cao L., Qian F., Taylor S., Oh M. J., Levitan I., Ye R. D., Carnegie G. K., Zhao Y., Malik A. B., Xu J. Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient // J. Exp. Med. 2015; 212: 267-280.

21. Kikuchi S., Hata M., Fukumoto K., Yamane Y., Matsui T., Tamura A., Yonemura S., Yamagishi H., Keppler D., Tsukita S., Tsukita S. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes // Nat. Genet. 2002; 31: 320-325.

22. Kitajiri S., Fukumoto K., Hata M., Sasaki H., Katsuno T., Nakagawa T., Ito J., Tsukita S., Tsukita S. Radixin deficiency causes deafness associated with progressive degeneration of cochlear streocilia // J. Cell Biol. 2004; 166: 559-570.

23. Loebrich S., B?hring R., Katsuno T., Tsukita S., Kneussel M. Activated radixin is essential for GABAA receptor alpha5 subunit anchoring at the actin cytoskeleton // EMBO J. 2006; 25: 987-999.

24. Hausrat T. J., Muhia M., Gerrow K., Thomas P., Hirdes W., Tsukita S., Heisler F. F., Herich L., Dubroqua S., Breiden P., Feldon J., Schwarz J. R., Yee B. K., Smart T. G., Triller A., Kneussel M. Radixin regulates synaptic GABAA receptor density and is essential for reversal learning and short-term memory // Nat. Commun. 2015; 6: 1-17.

25. Saotome I., Curto M., McClatchey A. I. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine // Dev. Cell. 2004; 6: 855-864.

26. Casaletto J. B., Saotome I., Curto M., McClatchey A. I. Ezrin-mediated apical integrity is required for intestinal homeostasis // Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 11924-11929.

27. Bonilha V. L., Rayborn M. E., Saotome I., McClatchey A. I., Hollyfield J. G. Microvilli defects in retinas of ezrin knockout mice // Exp. Eye Res. 2006; 82, 720-729.

28. Hatano R., Fujii E., Segawa H., Mukaisho K., Matsubara M., Miyamoto K., Hattori T., Sugihara H., Asano S. Ezrin, a membrane cytoskeletal cross-linker, is essential for the regulation of phosphate and calcium homeostasis // Kidney Int. 2013; 83: 41-49.

29. Hatano R., Akiyama K., Tamura A., Hosogi S., Marunaka Y., Caplan M. J., Ueno Y., Tsukita S., Asano S. Knockdown of ezrin causes intrahepatic cholestasis by the dysregulation of bile fluidity in the bile duct epithelium // Hepatology. 2015; 61: 1660-1671.

30. Tamura A., Kikuchi S., Hata M., Katsuno T., Matsui T., Hayashi H., Suzuki Y., Noda T., Tsukita S., Tsukita S. Achlorhydria by ezrin knockdown: defects in the formation/expansion of apical canaliculi in gastric parietal cells // J. Cell Biol. 2005; 169: 21-28.

31. Liu X., Yang T., Suzuki K., Tsukita S., Ishii M., Zhou S., Wang G., Cao L., Qian F., Taylor S., Oh M. J., Levitan I., Ye R. D., Carnegie G. K., Zhao Y., Malik A. B., Xu J. Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient // J. Exp. Med. 2015; 212: 267-280.

32. Rena Ohara, Hiroo Michikami, Yuko Nakamura, Akiko Sakata, Shingo Sakashita, Kaishi Satomi, Aya Shiba-Ishii, Junko Kano, Hiroyuki Yoshikawa и Masayuki Noguchi. Moesin Overexpression Is a Unique Biomarker of Adenomyosis // Pathology International. 2014; 64; 115-122.

33. Estecha A., Sanchez-Martin L., Puig-Kroger A. et al. Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion // J Cell Sci. 2009; 122: 3492-501.

34. Abiatari I., Esposito I., Oliveira T. D. et al. Moesin-dependent cytoskeleton remodelling is associated with an anaplastic phenotype of pancreatic cancer // J Cell Mol Med. 2010; 14: 1166-1179.

35. Kim C. Y., Jung W. Y., Lee H. J., Kim H. K., Kim A., Shin B. K. Proteomic analysis reveals overexpression of moesin and cytokeratin 17 proteins in colorectal carcinoma // Oncol Rep. 2011; 27: 608-620.

36. Kobayashi H., Sagara J., Kurita H. et al. Clinical significance of cellular distribution of moesin in patients with oral squamous cell carcinoma // Clin Cancer Res. 2004; 10: 572-580.

37. Ou-Yang M., Liu H. R., Zhang Y., Zhu X., Yang Q. ERM stable knockdown by siRNA reduced in vitro migration and invasion of human SGC-7901 cells // Biochimie. 2011; 93: 954-961.

38. Carmeci C., Thompson D. A., Kuang W. W., Lightdale N., Furthmayr H., Weigel R. J. Moesin expression is associated with the estrogen receptor-negative breast cancer phenotype // Surgery. 1998; 124: 211-217.

39. Louvet-Vallee S. ERM proteins: From cellular architecture to cell signaling // Biol Cell. 2000; 92: 305-316.

40. Nikitovic D., Katonis P., Tsatsakis A., Karamanos N. K., Tzanakakis G. N. Lumican, a small leucine-rich proteoglycan // IUBMB Life. 2008; 60: 818-823.

41. Naito Z. Role of the small leucine-rich proteoglycan (SLRP) family in pathological lesions and cancer cell growth // J Nippon Med Sch. 2005; 72: 137-145.

42. Tamesa M. S., Kuramitsu Y., Fujimoto M. et al. Detection of autoantibodies against cyclophilin A and triosephosphate isomerise in sera from breast cancer patients by proteomic analysis // Electrophoresis. 2009; 30: 2168-2181.

43. Robert J., Van Rymenant M., Lagae F. Enzymes in cancer. III. Triosephosphate isomerase activity of human blood serum in normal individuals and in individuals with various pathological conditions // Cancer. 1961; 14: 1166-1174.

44. Mikuriya K., Kuramitsu Y., Ryozawa S. et al. Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry // Int J Oncol. 2007; 30: 849-855.

45. Giretti M. S., Fu X. D., De Rosa G. et al. Extra-nuclear signalling of estrogen receptor to breast cancer cytoskeletal remodelling, migration and invasion // PLoS ONE. 2008; 3: e2238.

46. Brambilla D., Fais S. The Janus-faced role of ezrin in ‘linking’ cells to either normal or metastatic phenotype // Int J Cancer. 2009; 125: 2239-2245.

47. Clark E. A., Golub T. R., Lander E. S., Hynes R. O. Genomic analysis of metastasis reveals an essential role for RhoC // Nature. 2000; 406: 532-535.

48. Etienne-Manneville S., Hall A. Rho GTPases in cell biology // Nature. 2002; 420: 629-635.

49. Federici C., Brambilla D., Lozupone F., Matarrese P., de Milito A., Lugini L., Iessi E., Cecchetti S., Marino M., Perdicchio M. et al. Pleiotropic function of ezrin in human metastatic melanomas // Int J Cancer. 2009; 124: 2804-2812.

50. Martin-Villar E., Megias D., Castel S., Yurrita M. M., Vilaro? S., Quintanilla M. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition // J Cell Sci. 2006; 119: 4541-4553.

51. Ornek T., Fadiel A., Tan O., Naftolin F., Arici A. Regulation and activation of ezrin protein in endometriosis // Hum Reprod. 2008; 23: 2104-2112.

52. Weng W. H., Ahlen J., Astrom K., Lui W. O., Larsson C. Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas / Clin Cancer Res. 2005; 11: 6198-6204.

53. Qiao-Ying Jiang, Jian-Mei Xia, Hai-Gang Ding, Xiang-Wei Fei, Jun Lin and Rui-Jin Wu. RNAi-mediated blocking of ezrin reduces migration of ectopic endometrial cells in еndometriosis // Molecular Human Reproduction. 2012; 18 (9): 435-441.


Review

For citations:


Adamyan L.V., Manukyan L.M., Zayratyants V.O., Arslanyan K.N., Loginova O.N. Participation of ERM proteins in the regulation of the cell cytoskeleton and the role of the moesin protein in the path ogenesis of adenomyosis. Lechaschi Vrach. 2020;(12):9-13. (In Russ.) https://doi.org/10.26295/OS.2020.95.41.002

Views: 183

JATS XML

ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)