Preview

Лечащий Врач

Расширенный поиск

Участие ERM-белков в регуляции клеточного цитоскелета и роль белка моэзин в патогенезе аденомиоза

https://doi.org/10.26295/OS.2020.95.41.002

Полный текст:

Аннотация

Представлены данные о новых биологических маркерах аденомиоза. Описана роль ERM-белков в развитии и прогрессировании эндометриоза. Произведено углубленное изучение структуры, массы, локализации ERM-белков и их функциональной взаимосвязи с сигнальными путями Rho, RhoA, Rhoc, RhocK1, приводящей к усиленной миграции и адгезии клеток эктопического эндометрия. Описано, какие белки клеточной адгезии участвуют в связывании с доменом белка моэзина и функционируют как кросслинкеры между мембранными белками и цитоскелетом. Представлены данные о регуляции функции ERM-белков как кросслинкеров. С целью изучения функциональной роли ERM-белков описаны фенотипы мышей при присутствии и удалении белков моэзин, радиксин и эзрин по отдельности. Рассмотрены различные методы исследования экспрессии ERM-белков в эктопических и эутопических клетках эндометрия. Отдельно описана роль белков моэзин и эзрин в патогенезе аденомиоза и в прогрессировании патологического процесса. Изучена экспрессия моэзина в эктопических клетках эндометрия при аденомиозе, приводящая к прогрессированию патологического процесса. Описаны маркеры, участвующие в фосфорилировании белка моэзин, и маркеры, ингибирующие его активность, что благоприятно влияет на исход заболевания. Изучена экспрессия белка эзрин в эктопических клетках эндометрия в пролиферативную и секреторную фазы менструального цикла, описана его роль в развитии и прогрессировании аденомиоза, также изучены маркеры, активирующие и ингибирующие данный белок. Описаны формы онкологических заболеваний, при которых повышена экспрессия белков ERM-системы, что способствует более активному метастазированию раковых клеток и приводит к ухудшению прогноза заболевания. Изучено, какие биологические маркеры ингибируют активность ERM-белков, что способствует снижению метастазирования раковых клеток.

Об авторах

Л. В. Адамян
ФГБОУ ВО МГМСУ им. А. И. Евдокимова МЗ РФ
Россия


Л. М. Манукян
ФГБОУ ВО МГМСУ им. А. И. Евдокимова МЗ РФ
Россия


В. О. Зайратьянц
ФГБОУ ВО МГМСУ им. А. И. Евдокимова МЗ РФ
Россия


К. Н. Арсланян
ФГБОУ ВО МГМСУ им. А. И. Евдокимова МЗ РФ
Россия


О. Н. Логинова
ФГБОУ ВО МГМСУ им. А. И. Евдокимова МЗ РФ
Россия


Список литературы

1. Tsukita S., Yonemura S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins // J. Biol. Chem. 1999; 274: 34507-34510.

2. Ivetic A., Ridley A. J. Ezrin/radixin/moesin proteins and Rho - GTPase signaling in leucocytes // Immunology. 2004; 112: 165-176.

3. Bretscher A., Edwards K., Fehon R. G. ERM proteins and merlin: integrators at the cell cortex / Nat. Rev. Mol. Cell Biol. 2002; 3: 586-599.

4. Pearson M. A., Reczek D., Bretscher A., Karplus P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain // Cell. 2000; 101: 259-270.

5. Smith W. J., Nassar N., Bretscher A., Cerione R. A., Karplus P. A. Structure of the active N- erminal domain of ezrin. Conformational and mobility changes identify keystone interactions // J. Biol. Chem. 2003; 278: 4949-4956.

6. Yonemura S., Hirao M., Doi Y., Takahashi N., Kondo T., Tsukita S., Tsukita S. ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2 // J. Cell Biol. 1998; 140: 885-895.

7. D’Angelo R., Aresta S., Blangy A., Del Maestro L., Louvard D., Arpin M. Interaction of ezrin with the novel guanine nucleotide exchange factor PLEKHG6 promotes RhoG-dependent apical cytoskeleton rearrangements in epithelial cells // Mol. Biol. Cell. 2007; 18: 4780-4793.

8. Andre’oli C., Martin M., Le Borgne R., Reggio H., Mangeat P. Ezrin has properties to self-associate at the plasma membrane // J. Cell Sci. 1994; 107: 2509-2521.

9. Gary R., Bretscher A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site // Mol. Biol. Cell. 1995; 6: 1061-1075.

10. Berryman M., Franck Z., Bretscher A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells // J. Cell Sci. 1993; 105: 1025-1043.

11. Ingraffea J., Reczek D., Bretscher A. Distinct cell type-specific expression of scaffolding proteins EBP50 and E3KARP: EBP50 is generally expressed with ezrin in specific epithelia, whereas E3KARP is not // Eur. J. Cell Biol. 2002; 81: 61-68.

12. Amieva M. R., Furthmayr H. Subcellular localization of moesin in dynamic filopodia, retraction fibers, and other structures involved in substrate exploration, attachment, and cell-cell contacts // Exp. Cell Res. 1995; 219: 180-196.

13. Yang Q., Onuki R., Nakai C., Sugiyama Y. Ezrin and radixin both regulate the apical membrane localization of ABCC2 (MRP2) in human intestinal epithelial Caco-2 cells // Exp. Cell Res. 2007; 313: 3517-3525.

14. Magro F., Fraga S., Soares-da-Silva P. Interferon-gamma-induced STAT1-mediated membrane retention of NHE1 and associated proteins ezrin, radixin and moesin in HT-29 cells // Biochem. Pharmacol. 2005; 70: 1312-1319.

15. Woodward A. M., Crouch D. H. Cellular distributions of the ERM proteins in MDCK epithelial cells: regulation by growth and cytoskeletal integrity // Cell Biol. Int. 2001; 25: 205-213.

16. Yonemura S., Tsukita S., Tsukita S. Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins // J. Cell Biol. 1999; 145: 1497-1509.

17. Luciani F., Molinari A., Lozupone F., Calcabrini A., Lugini L., Stringaro A., Puddu P., Arancia G., Cianfriglia M., Fais S. P-glycoprotein-actin association through ERM family proteins: a role in P-glycoprotein function in human cells of lymphoid origin // Blood. 2002; 99: 641-648.

18. S. Tsukita S. Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout // J. Biol. Chem. 1999; 274: 2315-2321.

19. Hashimoto S., Amaya F., Matsuyama H., Ueno H., Kikuchi S., Tanaka M., Watanabe Y., Ebina M., Ishizaka A., Tsukita S., Hashimoto S. Dysregulation of lung injury and repair in moesin-deficient mice treated with intratracheal bleomycin // Am. J. Physiol. Lung Cell. Mol. Physiol. 2008; 295: L566-L574.

20. Liu X., Yang T., Suzuki K., Tsukita S., Ishii M., Zhou S., Wang G., Cao L., Qian F., Taylor S., Oh M. J., Levitan I., Ye R. D., Carnegie G. K., Zhao Y., Malik A. B., Xu J. Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient // J. Exp. Med. 2015; 212: 267-280.

21. Kikuchi S., Hata M., Fukumoto K., Yamane Y., Matsui T., Tamura A., Yonemura S., Yamagishi H., Keppler D., Tsukita S., Tsukita S. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes // Nat. Genet. 2002; 31: 320-325.

22. Kitajiri S., Fukumoto K., Hata M., Sasaki H., Katsuno T., Nakagawa T., Ito J., Tsukita S., Tsukita S. Radixin deficiency causes deafness associated with progressive degeneration of cochlear streocilia // J. Cell Biol. 2004; 166: 559-570.

23. Loebrich S., B?hring R., Katsuno T., Tsukita S., Kneussel M. Activated radixin is essential for GABAA receptor alpha5 subunit anchoring at the actin cytoskeleton // EMBO J. 2006; 25: 987-999.

24. Hausrat T. J., Muhia M., Gerrow K., Thomas P., Hirdes W., Tsukita S., Heisler F. F., Herich L., Dubroqua S., Breiden P., Feldon J., Schwarz J. R., Yee B. K., Smart T. G., Triller A., Kneussel M. Radixin regulates synaptic GABAA receptor density and is essential for reversal learning and short-term memory // Nat. Commun. 2015; 6: 1-17.

25. Saotome I., Curto M., McClatchey A. I. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine // Dev. Cell. 2004; 6: 855-864.

26. Casaletto J. B., Saotome I., Curto M., McClatchey A. I. Ezrin-mediated apical integrity is required for intestinal homeostasis // Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 11924-11929.

27. Bonilha V. L., Rayborn M. E., Saotome I., McClatchey A. I., Hollyfield J. G. Microvilli defects in retinas of ezrin knockout mice // Exp. Eye Res. 2006; 82, 720-729.

28. Hatano R., Fujii E., Segawa H., Mukaisho K., Matsubara M., Miyamoto K., Hattori T., Sugihara H., Asano S. Ezrin, a membrane cytoskeletal cross-linker, is essential for the regulation of phosphate and calcium homeostasis // Kidney Int. 2013; 83: 41-49.

29. Hatano R., Akiyama K., Tamura A., Hosogi S., Marunaka Y., Caplan M. J., Ueno Y., Tsukita S., Asano S. Knockdown of ezrin causes intrahepatic cholestasis by the dysregulation of bile fluidity in the bile duct epithelium // Hepatology. 2015; 61: 1660-1671.

30. Tamura A., Kikuchi S., Hata M., Katsuno T., Matsui T., Hayashi H., Suzuki Y., Noda T., Tsukita S., Tsukita S. Achlorhydria by ezrin knockdown: defects in the formation/expansion of apical canaliculi in gastric parietal cells // J. Cell Biol. 2005; 169: 21-28.

31. Liu X., Yang T., Suzuki K., Tsukita S., Ishii M., Zhou S., Wang G., Cao L., Qian F., Taylor S., Oh M. J., Levitan I., Ye R. D., Carnegie G. K., Zhao Y., Malik A. B., Xu J. Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient // J. Exp. Med. 2015; 212: 267-280.

32. Rena Ohara, Hiroo Michikami, Yuko Nakamura, Akiko Sakata, Shingo Sakashita, Kaishi Satomi, Aya Shiba-Ishii, Junko Kano, Hiroyuki Yoshikawa и Masayuki Noguchi. Moesin Overexpression Is a Unique Biomarker of Adenomyosis // Pathology International. 2014; 64; 115-122.

33. Estecha A., Sanchez-Martin L., Puig-Kroger A. et al. Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion // J Cell Sci. 2009; 122: 3492-501.

34. Abiatari I., Esposito I., Oliveira T. D. et al. Moesin-dependent cytoskeleton remodelling is associated with an anaplastic phenotype of pancreatic cancer // J Cell Mol Med. 2010; 14: 1166-1179.

35. Kim C. Y., Jung W. Y., Lee H. J., Kim H. K., Kim A., Shin B. K. Proteomic analysis reveals overexpression of moesin and cytokeratin 17 proteins in colorectal carcinoma // Oncol Rep. 2011; 27: 608-620.

36. Kobayashi H., Sagara J., Kurita H. et al. Clinical significance of cellular distribution of moesin in patients with oral squamous cell carcinoma // Clin Cancer Res. 2004; 10: 572-580.

37. Ou-Yang M., Liu H. R., Zhang Y., Zhu X., Yang Q. ERM stable knockdown by siRNA reduced in vitro migration and invasion of human SGC-7901 cells // Biochimie. 2011; 93: 954-961.

38. Carmeci C., Thompson D. A., Kuang W. W., Lightdale N., Furthmayr H., Weigel R. J. Moesin expression is associated with the estrogen receptor-negative breast cancer phenotype // Surgery. 1998; 124: 211-217.

39. Louvet-Vallee S. ERM proteins: From cellular architecture to cell signaling // Biol Cell. 2000; 92: 305-316.

40. Nikitovic D., Katonis P., Tsatsakis A., Karamanos N. K., Tzanakakis G. N. Lumican, a small leucine-rich proteoglycan // IUBMB Life. 2008; 60: 818-823.

41. Naito Z. Role of the small leucine-rich proteoglycan (SLRP) family in pathological lesions and cancer cell growth // J Nippon Med Sch. 2005; 72: 137-145.

42. Tamesa M. S., Kuramitsu Y., Fujimoto M. et al. Detection of autoantibodies against cyclophilin A and triosephosphate isomerise in sera from breast cancer patients by proteomic analysis // Electrophoresis. 2009; 30: 2168-2181.

43. Robert J., Van Rymenant M., Lagae F. Enzymes in cancer. III. Triosephosphate isomerase activity of human blood serum in normal individuals and in individuals with various pathological conditions // Cancer. 1961; 14: 1166-1174.

44. Mikuriya K., Kuramitsu Y., Ryozawa S. et al. Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry // Int J Oncol. 2007; 30: 849-855.

45. Giretti M. S., Fu X. D., De Rosa G. et al. Extra-nuclear signalling of estrogen receptor to breast cancer cytoskeletal remodelling, migration and invasion // PLoS ONE. 2008; 3: e2238.

46. Brambilla D., Fais S. The Janus-faced role of ezrin in ‘linking’ cells to either normal or metastatic phenotype // Int J Cancer. 2009; 125: 2239-2245.

47. Clark E. A., Golub T. R., Lander E. S., Hynes R. O. Genomic analysis of metastasis reveals an essential role for RhoC // Nature. 2000; 406: 532-535.

48. Etienne-Manneville S., Hall A. Rho GTPases in cell biology // Nature. 2002; 420: 629-635.

49. Federici C., Brambilla D., Lozupone F., Matarrese P., de Milito A., Lugini L., Iessi E., Cecchetti S., Marino M., Perdicchio M. et al. Pleiotropic function of ezrin in human metastatic melanomas // Int J Cancer. 2009; 124: 2804-2812.

50. Martin-Villar E., Megias D., Castel S., Yurrita M. M., Vilaro? S., Quintanilla M. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition // J Cell Sci. 2006; 119: 4541-4553.

51. Ornek T., Fadiel A., Tan O., Naftolin F., Arici A. Regulation and activation of ezrin protein in endometriosis // Hum Reprod. 2008; 23: 2104-2112.

52. Weng W. H., Ahlen J., Astrom K., Lui W. O., Larsson C. Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas / Clin Cancer Res. 2005; 11: 6198-6204.

53. Qiao-Ying Jiang, Jian-Mei Xia, Hai-Gang Ding, Xiang-Wei Fei, Jun Lin and Rui-Jin Wu. RNAi-mediated blocking of ezrin reduces migration of ectopic endometrial cells in еndometriosis // Molecular Human Reproduction. 2012; 18 (9): 435-441.


Для цитирования:


Адамян Л.В., Манукян Л.М., Зайратьянц В.О., Арсланян К.Н., Логинова О.Н. Участие ERM-белков в регуляции клеточного цитоскелета и роль белка моэзин в патогенезе аденомиоза. Лечащий Врач. 2020;(12):9-13. https://doi.org/10.26295/OS.2020.95.41.002

For citation:


Adamyan L.V., Manukyan L.M., Zayratyants V.O., Arslanyan K.N., Loginova O.N. Participation of ERM proteins in the regulation of the cell cytoskeleton and the role of the moesin protein in the path ogenesis of adenomyosis. Lechaschi Vrach. 2020;(12):9-13. (In Russ.) https://doi.org/10.26295/OS.2020.95.41.002

Просмотров: 27


Creative Commons License
Контент доступен под лицензией Attribution-NonCommercial-NoDerivatives 4.0 International.


ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)