Preview

Lechaschi Vrach

Advanced search

Zinc-dependent modulation of botulinum toxin type A efficacy: strategies for overcoming variability in therapeutic response in injection cosmetology

https://doi.org/10.51793/OS.2025.28.10.015

Abstract

Background. Since its introduction, botulinum toxin type A has become an indispensable tool in aesthetic medicine, allowing not only the elimination of expression lines, but also the restoration of symmetry and correction of facial contours through the harmonious redistribution of muscle tone. Given the pace of modern life and patients' desire to maintain daily social activity, there is a growing need to optimize results and increase the duration of botulinum therapy. Among the possible solutions that could affect the effectiveness of neuromodulators, the elimination of local zinc deficiency is of particular interest. Zinc, acting as an indispensable cofactor of the light chain of botulinum toxin type A, not only stabilizes the structure of the toxin, but also dynamically supports its protease activity in presynaptic neurons. A local deficiency of this element can become a «hidden barrier» to achieving optimal aesthetic results. Recent studies reveal the dual role of zinc: in addition to its direct effect on the catalytic domain of BTA, it regulates many other processes that indirectly determine the rate of toxin elimination and the duration of the effect. However, traditional methods of correcting deficiency, such as oral supplementation, show conflicting results, highlighting the need for innovative solutions.

Results. This article systematizes data on the molecular mechanisms of zinc dependence of botulinum toxin type A, factors contributing to tissue deficiency of this trace element, and modern strategies for its correction. Particular attention is paid to clinical markers of hidden zinc deficiency relevant to everyday practice and the prospects for combined approaches combining highly purified botulinum toxin type A preparations with adjuvant zinc delivery methods. The results of the analysis are intended to revise the paradigm of preparing patients for botulinum therapy, making the correction of local zinc deficiency an important step in increasing the effectiveness and prolonging the aesthetic result. For cosmetic doctors, understanding these relationships is key to overcoming resistance, reducing the frequency of repeat procedures, and achieving lasting patient satisfaction-the most important criteria for success in modern aesthetic medicine.

About the Authors

N. P. Mikhaylova
Martinex International Research Center for Innovative Technologies
Россия

Natalia P. Mikhaylova, cand. of sci. (Med.), Senior Researcher

12 bld 3, 2nd Vladimirskaya str., Moscow, 111123



L. R. Eidelman
Scientific and Production Association Microgen
Россия

Luiza R. Eidelman, medical advisor

10 2nd Volkonsky lane, Moscow, 127473



D. I. Znatdinov
Martinex International Research Center for Innovative Technologies
Россия

Damir I. Znatdinov, researcher

12 bld 3, 2nd Vladimirskaya str., Moscow, 111123



T. V. Ileshina
Central State Medical Academy of Department of Presidential Affairs
Россия

Tatyana V. Ileshina, cand. of sci. (Med.), Associate Professor, Department of dermatovenerology and cosmetology

19 bld 1A Marshala Timoshenko str., Moscow, 121359



References

1. Scott A. B. Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology 1980; 87 (10): 1044-1049. https://doi.org/10.1016/s0161-6420(80)35127-0.

2. Artemenko A. R., Abramov V. G. Botulinum toxin type A (Relatox) in the treatment of chronic migraine in adults: results of phase IIIb, randomized, one-blind, multicenter, active-controlled, parallel-group trial. Zhurnal nevrologii i psikhiatrii im. S. S. Korsakova. 2023; 123 (5): 89-99. (In Russ.) https://doi.org/10.17116/jnevro202312305189.

3. Mingazova L. R., Orlova O. R., Soykher M. G., Soykher M. I., Artemenko A. R. Myofascial orofacial pain: clinical and pathogenetic mechanisms, possibilities of botulinum therapy. Rossiiskii zhurnal boli. 2025; 23 (2): 12-23. (In Russ.) https://doi.org/10.17116/pain20252302112.

4. Rasetti-Escargueil C., Palea S. Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins (Basel). 2024; 16 (6): 261. DOI: 10.3390/toxins16060261. PMID: 38922155; PMCID: PMC11209287.

5. Fan Y., Guo X., Tian Y., Li J., Xi H. Botulinum toxin type A inhibits the formation of hypertrophic scar through the JAK2/STAT3 pathway. Biomol Biomed. 2024; 25 (1): 249-258. DOI: 10.17305/bb.2024.10906. PMID: 39132968; PMCID: PMC11647250.

6. Fabi S. G., Carruthers J., Joseph J., Cox S. E., Yoelin S., Few J., Kaufman-Janette J., Dayan S. High-Dose Neuromodulators: A Roundtable on Making Sense of the Data in Real-World Clinical Practice. Aesthet Surg J Open Forum. 2021; 3 (4): ojab036. DOI: 10.1093/asjof/ojab036. PMID: 34708202; PMCID: PMC8545706.

7. Philipp-Dormston W. G., Joseph J. H., Carruthers J. D. A., Fezza J. P., Mukherjee M., Yasin A., Musumeci M. Why Dosing Matters: A Closer Look at the Dose-Response Relationship With OnabotulinumtoxinA. J Cosmet Dermatol. 2025; 24 (4): e70170. DOI: 10.1111/jocd.70170. PMID: 40285447; PMCID: PMC12032540.

8. Lebeda F. J., et al. The zinc-dependent protease activity of the botulinum neurotoxins. Toxins. 2010; 2 (5): 978-997. DOI: 10.3390/toxins2050978.

9. Kogan S., Sood A., Garnick M. S. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications. Wounds. 2017; 29 (4): 102-106.

10. Mocchegiani E., Romeo J., Malavolta M., et al. Zinc: dietary intake and impact of supplementation on immune function in elderly. Age (Dordr). 2013; 35 (3): 839-860. DOI: 10.1007/s11357-011-9377-3.

11. Hara T., Yoshigai E., Ohashi T., Fukada T. Zinc transporters as potential therapeutic targets: An updated review. J Pharmacol Sci. 2022; 148 (2): 221-228. DOI: 10.1016/j.jphs.2021.11.007.

12. Maywald M., Rink L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules. 2024; 14 (7): 863. Published 2024 Jul 19. DOI: 10.3390/biom14070863.

13. Stiles L. I., Ferrao K., Mehta K. J. Role of zinc in health and disease. Clin Exp Med. 2024; 24 (1): 38. Published 2024 Feb 17. DOI: 10.1007/s10238-024-01302-6.

14. Gupta S., Brazier A. K. M., Lowe N. M. Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation. J Hum Nutr Diet. 2020; 33 (5): 624-643. DOI: 10.1111/jhn.12791.

15. Schoofs H., et al. Zinc Toxicity: Understanding the Limits. Molecules (Basel, Switzerland). 2024; 13 (29): 3130. DOI: 10.3390/molecules29133130.

16. Lansdown A. B. G., et al. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2007; 1 (15): 2-16. DOI: 10.1111/j.1524-475X.2006.00179.x.

17. Saper R. B., Rash R. Zinc: an essential micronutrient. American family physicianvol. 2009; 9 (79): 768-772.

18. King J. C., et al. Zinc homeostasis in humans. The Journal of nutrition. 2000: 5S (130): 1360S-1366S. DOI: 10.1093/jn/130.5.1360S.

19. Massih Y. N., Hall A. G., Suh J., King J. C. Zinc Supplements Taken with Food Increase Essential Fatty Acid Desaturation Indices in Adult Men Compared with Zinc Taken in the Fasted State. The Journal of nutrition. 2021; 151 (9): 2583-2589. https://doi.org/10.1093/jn/nxab149.

20. Hall A. G., King J. C. The Molecular Basis for Zinc Bioavailability. Int J Mol Sci. 2023; 24 (7): 6561. DOI: 10.3390/ijms24076561. PMID: 37047530; PMCID: PMC10095312.

21. Blasiak J., et al. Zinc and Autophagy in Age-Related Macular Degeneration. International journal of molecular sciences. 2020; 21 (14): 4994. DOI: 10.3390/ijms21144994.

22. Sanna A., et al. Zinc Status and Autoimmunity: A Systematic Review and Meta-Analysis. Nutrients. 2018; 1 (10): 68. DOI: 10.3390/nu10010068.

23. Foster L., et al. Zinc in Dermatology: Exploring Its Emerging Role in Enhancing Botulinum Toxin Formulations and Clinical Efficacy. Current issues in molecular biology. 2024; 11 (46): 12088-12098. DOI: 10.3390/cimb46110717.

24. Shemais N., et al. The effect of botulinum toxin A in patients with excessive gingival display with and without zinc supplementation: randomized clinical trial. Clinical oral investigations. 2021; 11 (25): 6403-6417. DOI: 10.1007/s00784-021-03944-2.

25. Cohen J. L. Scientific skepticism and new discoveries: an analysis of a report of zinc/phytase supplementation and the efficacy of botulinum toxins in treating cosmetic facial rhytides, hemifacial spasm and benign essential blepharospasm. Journal of cosmetic and laser therapy: official publication of the European Society for Laser Dermatology. 2014; 5 (16): 258-62. DOI: 10.3109/14764172.2014.948882.

26. Foster L., Foppiani J. A., Xun H., Lee D., Utz B., Hernandez Alvarez A., Domingo-Escobar M. J., Taritsa I. C., Gavlasova D., Lee T. C., Lin G. J., Choudry U., Lin S. J. Zinc in Dermatology: Exploring Its Emerging Role in Enhancing Botulinum Toxin Formulations and Clinical Efficacy. Curr Issues Mol Biol. 2024; 46 (11): 12088-12098. DOI: 10.3390/cimb46110717. PMID: 39590311; PMCID: PMC11593192.

27. Kim D., Cho Y. B., Seo I. Botulinum Toxin Composition Having Prolonged Efficacy Duration. URL: https://patents.google.com/patent/US20210077596A1/en.

28. Saravanakumar K., Park S., Santosh S. S., et al. Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. Int J Biol Macromol. 2022; 222 (Pt B): 2744-2760. DOI: 10.1016/j.ijbiomac.2022.10.055.

29. Selyanin M. A., Boykov P. Y., Khabarov V. N. Hyaluronic Acid: Preparation, Properties, Application in Biology and Medicine. Translated by Felix Polyak, 1st ed. Wiley. 2015. https://doi.org:10.1002/9781118695920.

30. Li L., Singh B. R. Role of zinc binding in type A botulinum neurotoxin light chain's toxic structure. Biochemistry. 2000; 34 (39): 10581-10586. DOI: 10.1021/bi0007472.

31. Fu F. N., et al. Role of zinc in the structure and toxic activity of botulinum neurotoxin. Biochemistry. 1998; 15 (37): 5267-78. DOI: 10.1021/bi9723966.

32. Simpson L. L., et al. The role of zinc binding in the biological activity of botulinum toxin. The Journal of biological chemistry. 2001; 29 (276): 27034-27041. DOI: 10.1074/jbc.M102172200.

33. Elgend Y. S., et al. Effect of zinc or copper supplementation on the efficacy and sustainability of botulinum toxin A "Botox" injection in masseter muscle of albino rats. Journal of stomatology, oral and maxillofacial surgery. 2024; 5 (126): 102156. DOI: 10.1016/j.jormas.2024.102156.

34. Khatkova S. E., Pogoreltseva O. A., Orlova O. R., et al. Safety and efficacy of Relatox in comparison with Dysport in the treatment of focal spasticity of the upper limb in patients after stroke and traumatic brain injury (results of a prospective simple blind randomized comparative study in parallel groups). Zhurnal nevrologii i psikhiatrii im. S. S. Korsakova. 2024; 124 (12): 79-85. (In Russ.) https://doi.org/10.17116/jnevro202412412179.

35. Gusev V. V., Makarov E. A., Lvova O. A. Comparative analysis of the effectiveness of Botulinum toxin type A – hemagglutinin preparations of the Relatox and Botox complex in the treatment of patients with primary idiopathic blepharospasm. Zhurnal nevrologii i psikhiatrii im. S. S. Korsakova. 2025; 125 (2): 86 90. (In Russ.) https://doi.org/10.17116/jnevro202512502186.


Review

For citations:


Mikhaylova N.P., Eidelman L.R., Znatdinov D.I., Ileshina T.V. Zinc-dependent modulation of botulinum toxin type A efficacy: strategies for overcoming variability in therapeutic response in injection cosmetology. Lechaschi Vrach. 2025;(10):98-103. (In Russ.) https://doi.org/10.51793/OS.2025.28.10.015

Views: 63

JATS XML

ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)