Hallerworden — Spatz disease: clinical observation
https://doi.org/10.51793/OS.2025.28.4.002
Abstract
Results. The article describes a clinical observation of a rare hereditary Hallervorden – Spatz disease (pantothenate kinase-associated neurodegeneration or neurodegeneration with iron accumulation in the brain) with an atypical late form in the terminal stage with a debut in the fourth decade of life with a rapidly progressive course and a fatal outcome. The most characteristic signs of the disease in this patient were Parkinsonism syndrome, severe postural instability, pyramidal insufficiency, various types of hyperkinesis, decreased cognitive functions, and depression. When substantiating the diagnosis, we relied on the characteristic clinical picture and typical MRI signs in the form of the tiger's eye symptom (a symmetrical hyperintense zone in the region of the pale globe within a larger hypointense zone). Late cases should be differentiated from such diseases as Parkinson's disease, Lewy body disease, Wilson – Konovalov disease, Fahr disease, Huntington's disease, neuroferritinopathy and others. Due to the current lack of effective treatment methods, the patient received symptomatic treatment, since there is no etiologic and pathogenetic therapy for this disease.
Conclusion. The current standard of care is aimed at symptomatic treatment (dopamine agonists or amantadines, anticholinesterase drugs, benzodiazepines, muscle relaxants, botulinum toxin). Surgical treatment methods such as deep brain stimulation, ablative pallidotomy, thalamotomy are also used. It is necessary to increase the awareness of neurologists about the presence of this rare form of neurodegenerative disease with the clinic of parkinsonism due to the presence of other nosological forms of parkinsonism-plus. Early diagnosis of Hallervorden – Spatz disease will allow symptomatic therapy to be prescribed at early stages, corresponding to the various manifestations of the disease, to improve the quality of life of patients and reduce medical and economic costs.
About the Authors
L. B. NovikovaРоссия
Lilia B. Novikova - Dr. of Sci. (Med.), Professor, Head of the Department of Neurology and Neurorehabilitation, Federal State Budgetary Educational Institution of Higher Education Bashkir State Medical University.
3 Lenina Str., Ufa, 450000
K. M. Ziultsle
Россия
Karina M. Ziultsle - Cand. of Sci. (Med.), Associate Professor of the Department of Neurology and Neurorehabilitation, Federal State Budgetary Educational Institution of Higher Education Bashkir State Medical University.
3 Lenina Str., Ufa, 450000
A. P. Akopyan
Россия
Anait P. Akopyan - Cand. of Sci. (Med.), Associate Professor of the Department of Neurology and Neurorehabilitation, Federal State Budgetary Educational Institution of Higher Education Bashkir State Medical University.
3 Lenina Str., Ufa, 450000
References
1. Kolarova H., Tan J., Strom T. M., Meitinger T., Wagner M., Klopstock T. Lifetime risk of autosomal recessive neurodegeneration with brain iron accumulation (NBIA) disorders calculated from genetic databases. EBioMedicine. 2022; 77: 103869. DOI: 10.1016/j.ebiom.2022.103869.
2. Di Meo I., Tiranti V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol. 2018; 22 (2): 272-284. DOI: 10.1016/j.ejpn.2018.01.008.
3. Huang Y., Wan Z., Tang Y., Xu J., Laboret B., Nallamothu S., Yang C., Liu B., Lu R. O., Lu B., Feng J., Cao J., Hayflick S., Wu Z., Zhou B. Pantothenate kinase 2 interacts with PINK1 to regulate mitochondrial quality control via acetyl-CoA metabolism. Nat Commun. 2022; 13 (1): 2412. DOI: 10.1038/s41467-022-30178-x.
4. Nassif D., Pereira J. S., Spitz M., Capitão C., Faria A. Neurodegeneration with brain iron accumulation: A case report. Dement Neuropsychol. 2016; 10 (2): 160-164. DOI: 10.1590/S1980-5764-2016DN1002014.
5. Hayflick S. J., Kurian M. A., Hogarth P. Neurodegeneration with brain iron accumulation. Handb Clin Neurol. 2018; 147: 293-305. DOI: 10.1016/B978-0-444-63233-3.00019-1.
6. Voges L., Kupsch A. Renaming of Hallervorden-Spatz disease: the second man behind the name of the disease. J Neural Transm (Vienna). 2021; 128 (11): 1635-1640. DOI: 10.1007/s00702-021-02408-x.
7. Munshi M. I., Yao S. J., Ben Mamoun C. Redesigning therapies for pantothenate kinase-associated neurodegeneration. J Biol Chem. 2022; 298 (3): 101577. DOI: 10.1016/j.jbc.2022.101577.
8. Autlev K. M., Kruchinin E. V., Kozlov M. V., Mokin E. A. and others. Hereditary neurodegenerations with iron accumulation in the brain (literature review). Ural Medical Journal. 2019; 3 (171): 9-16. (In Russ.)
9. Shi X., Zheng F., Ye X., Li X., Zhao Q., Lin Z., Hu Y., Wang J. Basal ganglia calcification and novel compound heterozygous mutations in the PANK2 gene in a Chinese boy with classic Pantothenate kinase-associated neurodegeneration: A case report. Medicine (Baltimore). 2018; 97 (15): e0316. DOI: 10.1097/MD.0000000000010316.
10. Shalash A. S., Rösler T. W., Abdelrahman I. Y., Abulmakarem H. S., Müller S. H., Hopfner F., Kuhlenbäumer G., Höglinger G. U., Salama M. Atypical pantothenate kinase-associated neurodegeneration with variable phenotypes in an Egyptian family. Heliyon. 2021; 7 (7): e07469. DOI: 10.1016/j.heliyon.2021.e07469.
11. Marshall R. D., Collins A., Escolar M. L., Jinnah H. A., Klopstock T., Kruer M. C., Videnovic A., Robichaux-Viehoever A., Burns C., Swett L. L., Revicki D. A., Bender R. H., Lenderking W. R. Diagnostic and clinical experience of patients with pantothenate kinase-associated neurodegeneration. Orphanet J Rare Dis. 2019; 14 (1): 174. DOI: 10.1186/s13023-019-1142-1.
12. Brezavar D., Bonnen P. E. Incidence of PKAN determined by bioinformatic and population-based analysis of ~140,000 humans. Mol Genet Metab. 2019; 128 (4): 463-469. DOI: 10.1016/j.ymgme.2019.09.002.
13. Ponomarev V. V. Hallervorden – Spatz disease (Clinical review and clinical observation). International Journal of Neurology. 2011; 3 (41): 120-124. (In Russ.)
14. Kopishinskaya S. V., Makushina S. V., Gustov A. V., Parshina E. V. Pantothenate kinase-associated neurodegeneration (Hallervorden-Spatz disease). Medical Almanac. 2013; 1 (25): 150-152. (In Russ.)
15. Razmeh S., Habibi A. H., Orooji M., Alizadeh E., Moradiankokhdan K., Razmeh B. Pantothenate kinase-associated neurodegeneration: clinical aspects, diagnosis and treatments. Neurol Int. 2018; 10 (1): 7516.
16. Chang X., Zhang J., Jiang Y., Wang J., Wu Y. Natural history and genotype-phenotype correlation of pantothenate kinase-associated neurodegeneration. CNS Neurosci Ther. 2020; 26: 754-761. https://doi.org/10.1111/cns.13294.
17. Choayb S., Adil H., Ali Mohamed D., Allali N., Chat L., El Haddad S. Eye of the Tiger Sign in Pantothenate Kinase-Associated Neurodegeneration. Case Rep Radiol. 2021; 2021: 6633217. DOI: 10.1155/2021/6633217.
18. Paprocka J., Machnikowska-Sokołowska M., Gruszczyńska K., Emich-Widera E. Neuroimaging of Basal Ganglia in Neurometabolic Diseases in Children. Brain Sci. 2020; 10 (11): 849. DOI: 10.3390/brainsci10110849.
19. Perevoshchikova A. A., Yurkina N. V., Spichak I. I. Clinical case of Hallervorden-Spatz disease. Pediatric Bulletin of the Southern Urals. 2022; 2: 92-100. (In Russ.)
20. Belinskaya V. V., Dutova T. I. Features of diagnosis of Hallervorden-Spatz disease (clinical observation). Universe of the brain. 2021; 2: 7-9. (In Russ.)
21. Rivera D., Roa-Sanchez P., Bidó P., Speckter H., Oviedo J., Stoeter P. Cerebral and cerebellar white matter tract alterations in patients with Pantothenate Kinase-Associated Neurodegeneration (PKAN). Parkinsonism Relat Disord. 2022; 98: 1-6. DOI: 10.1016/j.parkreldis.2022.03.017.
22. Hayflick S. .J, Hartman M., Coryell J., et all. Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol 2006; 27: 1230-1233.
23. Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord. 2015; 8 (1): 1-13. DOI: 10.14802/jmd.14034.
24. Sharma L. K., Subramanian C., Yun M. K., Frank M. W., White S. W., Rock C. O., Lee R. E., Jackowski S. A therapeutic approach to pantothenate kinase associated neurodegeneration. Nat Commun. 2018; 9 (1): 4399. DOI: 10.1038/s41467-018-06703-2.
25. Pohane M. R., Dafre R., Sontakke N. G. Diagnosis and Treatment of Pantothenate Kinase-Associated Neurodegeneration (PKAN): A Systematic Review. Cureus. 2023; 15 (9): 46135. DOI: 10.7759/cureus.46135.
26. Rudenskaya G. E., Zakharova E. Yu. Hereditary neurodegenerations with iron accumulation in the brain. Annals of Clinical and Experimental Neurology. 2013; 4 (7): 51-60. (In Russ.)
27. Woo K. A., Kim H. J., Jeon S. H., Park H. R., Park K. W., Lee S. H., Chung S. J., Chae J. H., Paek S. H., Jeon B. Long-Term Outcomes of Deep Brain Stimulation in Pantothenate Kinase-Associated Neurodegeneration-Related Dystonia. J Mov Disord. 2022 Sep; 15 (3): 241-248. DOI: 10.14802/jmd.22002
28. Garcia-Ruiz P. J., Ayerbe J., Vela Desojo L., Feliz C. E., Del Val Fernandez J. Deep brain stimulation for pantothenate kinase-associated neurodegeneration. Case Rep Neurol Med. 2015; 2015: 245735. DOI: 10.1155/2015/245735.
Review
For citations:
Novikova L.B., Ziultsle K.M., Akopyan A.P. Hallerworden — Spatz disease: clinical observation. Lechaschi Vrach. 2025;(4):16-21. (In Russ.) https://doi.org/10.51793/OS.2025.28.4.002
JATS XML



















