The effect of hyperuricemia and type 2 diabetes mellitus on the development and course of chronic heart failure
https://doi.org/10.51793/OS.2025.28.3.004
Abstract
Background. Diseases of the cardiovascular system occupy a leading place in the structure of mortality. The number of patients with circulatory system pathology is increasing every year. Among the most significant diseases are arterial hypertension, coronary heart disease, rhythm and conduction disorders, the complication of which is chronic heart failure. The number of patients with this diagnosis in the world is about 64 million people. The increase in morbidity is associated with an increase in life expectancy of people, an increase in associated pathologies and risk factors for cardiovascular diseases, and a decrease in mortality after myocardial infarction. The presence of comorbid pathology aggravates the course in such patients. Cardiovascular disease is often accompanied by pathologies such as overweight or obesity, hyperlipidemia, apnea, type 2 diabetes mellitus, chronic obstructive pulmonary disease, and others.
Conclusion. The analysis of Russian and foreign literature sources on the studied problem was carried out, which showed that among the comorbid conditions that aggravate the occurrence and course of heart failure, diabetes mellitus and hyperuricemia have recently occupied a separate place. Many studies have noted the presence of pathogenetic mechanisms in the formation of chronic heart failure in patients with diabetes mellitus. These include oxidative stress, endothelial dysfunction, inflammation, etc., which lead to fibrosis and remodeling of the heart. Uric acid is a component of pathophysiological, hemodynamic and inflammatory processes. Its elevated levels are noted in patients with chronic heart failure, which is confirmed by many studies on this topic. However, the effect of hyperuricemia on this disease is not fully known at present. All this interprets the need for further study, search for methods of early diagnosis and reduction of the effect of hyperuricemia and diabetes mellitus on the occurrence and course of chronic heart failure.
About the Authors
M. G. KolpachevaРоссия
Marina G. Kolpacheva, Assistant of the Department of Polyclinic Therapy
10 Studencheskaya str. Voronezh, 394036
A. A. Pashkova
Россия
Anna A. Pashkova, Dr. of Sci. (Med.), Professor, Head of the Department of Polyclinic Therapy
10 Studencheskaya str. Voronezh, 394036
V. I. Shevcova
Россия
Veronica I. Shevcova, Cand. of Sci. (Med.), Associate Professor of the Department of Infectious Diseases and Clinical Immunology
10 Studencheskaya str. Voronezh, 394036
References
1. Shlyakhto E. V., Belenkov Yu. N., Boitsov S. A., etc. Prospective observational multicenter registry study of patients with chronic heart failure in the Russian Federation (PRIORITY-CHF): rationale, objectives and design of the study. Rossiiskii kardiologicheskii zhurnal. 2023; 28 (6): 7-14. (In Russ.) DOI: 10.15829/1560-4071-2023-5456. edn lkshvp.
2. Swarovskaya A. V., Garganeeva A. A. Type 2 diabetes mellitus and heart failure – a modern view on the mechanisms of development. Sakharnyi diabet. 2022; 25 (3): 267-274. (In Russ.) DOI: 10.14341/dm12648. edn thwlkb.
3. Volynkina A. P., Zolotoyedov V. I., Nikolaeva E. Yu., etc. Features of chronic heart failure in diabetes mellitus. Mnogoprofilnyi statsionar. 2022; 9 (2): 52-55. (In Russ.) EDN TDYDAE.
4. Cho N. H., Shaw J. E., Karuranga S., Huang Y., da Rocha Fernandes J. D., Ohlrogge A. W., Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018; 138: 271-281. DOI: 10.1016/j.diabres.2018.02.023. Epub 2018 Feb 26. PMID: 29496507.
5. Kannel W. B., Hjortland M., Castelli W. P. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974; 34 (1): 29-34. DOI: 10.1016/0002-9149(74)90089-7. PMID: 4835750.
6. Drapkina O. M., Shalnova S. A., Imaeva A. E. and others. Epidemiology of cardiovascular diseases and their risk factors in the regions of the Russian Federation. The third study (ESSAY-RF-3). Substantiation and design of the study. Kardiovaskulyarnaya terapiya i profilaktika. 2022; 21 (5): 48-57. (In Russ.) DOI: 10.15829/1728-8800-2022-3246. edn ezuguw.
7. Ohkuma T., Komorita Y., Peters S. A. E., Woodward M. Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals.. Diabetologia. 2019; 62 (9): 1550-1560. DOI: 10.1007/s00125-019-4926-x. Epub 2019 Jul 18. PMID: 31317230; PMCID: PMC6677875.
8. Cosentino F., Grant P. J., Aboyans V., Bailey C. J., Ceriello A., Delgado V., Federici M., Filippatos G., Grobbee D. E., Hansen T. B., Huikuri H. V., Johansson I., Jüni P., Lettino M., Marx N., Mellbin L. G., Östgren C. J., Rocca B., Roffi M., Sattar N., Seferović P. M., Sousa-Uva M., Valensi P., Wheeler D. C.; ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020; 41 (2): 255-323. DOI: 10.1093/eurheartj/ehz486. Erratum in: Eur Heart J. 2020; 41 (45): 4317. DOI: 10.1093/eurheartj/ehz828. PMID: 31497854.
9. Ponomareva O. V., Smirnova E. A. Modern view on the role of myocardial fibrosis and its biochemical markers in the diagnosis of chronic heart failure. Nauka molodykh (Eruditio Juvenium). 2024; 12 (2): 303-316. (In Russ.) https://doi.org/10.23888/HMJ2024122303-316.
10. Negishi K. Echocardiographic feature of diabetic cardiomyopathy: where are we now? Cardiovasc Diagn Ther. 2018; 8 (1): 47-56. DOI: 10.21037/cdt.2018.01.03. PMID: 29541610; PMCID: PMC5835643.
11. Ritchie R. H., Abel E. D. Basic Mechanisms of Diabetic Heart Disease. Circ Res. 2020; 126 (11): 1501-1525. DOI: 10.1161/CIRCRESAHA.120.315913. Epub 2020 May 21. PMID: 32437308; PMCID: PMC7251974.
12. Nakamura M., Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J Physiol. 2020; 598 (14): 2977-2993. DOI: 10.1113/JP276747. Epub 2019 Apr 3. PMID: 30869158.
13. Park T. S., Hu Y., Noh H. L., Drosatos K., Okajima K., Buchanan J., Tuinei J., Homma S., Jiang X. C., Abel E. D., Goldberg I. J. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res. 2008; 49 (10): 2101-2112. DOI: 10.1194/jlr.M800147-JLR200. Epub 2008 May 30. PMID: 18515784; PMCID: PMC2533410.
14. Basu R., Oudit G. Y., Wang X., Zhang L., Ussher J. R., Lopaschuk G. D., Kassiri Z. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol. 2009; 297 (6): H2096-2108. DOI: 10.1152/ajpheart.00452.2009. Epub 2009 Oct 2. PMID: 19801494.
15. Jia G., Hill M. A., Sowers J. R. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ Res. 2018; 122 (4): 624-638. DOI: 10.1161/CIRCRESAHA.117.311586. PMID: 29449364; PMCID: PMC5819359.
16. Zheng H., Zhu H., Liu X., Huang X., Huang A., Huang Y. Mitophagy in Diabetic Cardiomyopathy: Roles and Mechanisms. Front Cell Dev Biol. 2021; 9: 750382. DOI: 10.3389/fcell.2021.750382. PMID: 34646830; PMCID: PMC8503602.
17. Bugger H., Abel E. D. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014; 57 (4): 660-671. DOI: 10.1007/s00125-014-3171-6. Epub 2014 Jan 30. PMID: 24477973; PMCID: PMC3969857.
18. Shimizu M., Umeda K., Sugihara N., Yoshio H., Ino H., Takeda R., Okada Y., Nakanishi I. Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol. 1993; 46 (1): 32-36. DOI: 10.1136/jcp.46.1.32. PMID: 7679418; PMCID: PMC501107.
19. Schulze P. C., Drosatos K., Goldberg I. J. Lipid Use and Misuse by the Heart. Circ Res. 2016; 118 (11): 1736-1751. DOI: 10.1161/CIRCRESAHA.116.306842. PMID: 27230639; PMCID: PMC5340419.
20. Yu W., Cheng J. D. Uric Acid and Cardiovascular Disease: An Update From Molecular Mechanism to Clinical Perspective. Front Pharmacol. 2020; 11: 582680. DOI: 10.3389/fphar.2020.582680. PMID: 33304270; PMCID: PMC7701250.
21. Larina V. N., Larin V. G. Hyperuricemia and chronic heart failure: risk factors and prognostic parallels. Consilium Medicum. 2020; 22 (5): 62-66. (In Russ.) DOI: 10.26442/20751753.2020.5.200158.
22. Miao L., Guo M., Pan D., Chen P., Chen Z., Gao J., Yu Y., Shi D., Du J. Serum Uric Acid and Risk of Chronic Heart Failure: A Systematic Review and Meta-Analysis.. Front Med (Lausanne). 2021; 8: 785327. DOI: 10.3389/fmed.2021.785327. PMID: 34977088; PMCID: PMC8715937.
23. Shalnova S. A., Deev A. D., Artamonov G. V., Duplyakov D. V., Efanov A. Yu., Zhernakova Yu. V., et al. Hyperuricemia and its correlates in the russian population (results of ESSE-RF epidemiological study). Racionalnaya Farmakoterapiya v kardiologii. 2014; 10 (2): 153-159. (In Russ.) https://doi.org/10.20996/1819-6446-2014-10-2-153-159.
24. Chazova I. E., Zhernakova Yu. V., Kislyak O. A., Podzolkov V. I., Oshchepkova E. V., Mironova O. Yu., Blinova N. V. Consensus on the management of patients with hyperuricemia and high cardiovascular risk: 2022. Sistemnye gipertenzii. 2022; 19 (1): 5-22. (In Russ.) https://doi.org/10.38109/2075-082X-2022-1-5-2.
25. Coiro S., Carluccio E., Biagioli P., Alunni G., Murrone A., D'Antonio A., Zuchi C., Mengoni A., Girerd N., Borghi C., Ambrosio G. Elevated serum uric acid concentration at discharge confers additive prognostic value in elderly patients with acute heart failure. Nutr Metab Cardiovasc Dis. 2018; 28 (4): 361-368. DOI: 10.1016/j.numecd.2017.12.009. Epub 2018 Jan 10. PMID: 29501446.
26. Kuwabara M., Hisatome I., Niwa K., Hara S., Roncal-Jimenez C. A., Bjornstad P., Nakagawa T., Andres-Hernando A., Sato Y., Jensen T., Garcia G., Rodriguez-Iturbe B., Ohno M., Lanaspa M. A., Johnson R. J. Uric Acid Is a Strong Risk Marker for Developing Hypertension From Prehypertension: A 5-Year Japanese Cohort Study. Hypertension. 2018; 71 (1): 78-86. DOI: 10.1161/HYPERTENSIONAHA.117.10370. Epub 2017 Dec 4. PMID: 29203632; PMCID: PMC5730471.
27. Galassi F. M., Borghi C. A brief history of uric acid: From gout to cardiovascular risk factor. Eur J Intern Med. 2015; 26 (5): 373. DOI: 10.1016/j.ejim.2015.04.005. Epub 2015 Apr 18. PMID: 25898779.
28. Virdis A., Masi S., Casiglia E., Tikhonoff V., Cicero A. F. G., Ungar A., Rivasi G., Salvetti M., Barbagallo C. M., Bombelli M., et al. Identification of the Uric Acid Thresholds Predicting an Increased Total and Cardiovascular Mortality Over 20 Years. Hypertension. 2020; 75: 302-308. DOI: 10.1161/HYPERTENSIONAHA.119.13643.
29. Gu J., Fan Y. Q., Zhang H. L., Zhang J. F., Wang C. Q. Serum uric acid is associated with incidence of heart failure with preserved ejection fraction and cardiovascular events in patients with arterial hypertension. J Clin Hypertens (Greenwich). 2018; 20 (3): 560-567. DOI: 10.1111/jch.13210. Epub 2018 Feb 15. PMID: 29447438; PMCID: PMC8031219.
30. Kobayashi Y., Omote K., Nagai T., Kamiya K., Konishi T., Sato T., Kato Y., Komoriyama H., Tsujinaga S., Iwano H., Yamamoto K., Yoshikawa T., Saito Y., Anzai T. Prognostic Value of Serum Uric Acid in Hospitalized Heart Failure Patients With Preserved Ejection Fraction (from the Japanese Nationwide Multicenter Registry). Am J Cardiol. 2020; 125 (5): 772-776. DOI: 10.1016/j.amjcard.2019.12.003. Epub 2019 Dec 9. PMID: 31898963.
Review
For citations:
Kolpacheva M.G., Pashkova A.A., Shevcova V.I. The effect of hyperuricemia and type 2 diabetes mellitus on the development and course of chronic heart failure. Lechaschi Vrach. 2025;(3):29-33. (In Russ.) https://doi.org/10.51793/OS.2025.28.3.004
JATS XML



















