Preview

Lechaschi Vrach

Advanced search

Features of the microbiome of the gastrointestinal tract in patients with COVID-19

https://doi.org/10.51793/OS.2025.28.3.008

Abstract

Background. COVID-19 is characterised by multimorbidity with involvement of not only respiratory organs, but also cardiovascular, urinary and nervous systems and gastrointestinal tract. Clinical symptoms of the disease are united in the gastrointestinal syndrome, registered in 30-79% of cases. The onset of the disease may be accompanied by diarrhoea in 50% of patients and may be combined with or preceded by nasopharyngeal catarrhal symptoms.

Objective. To evaluate the features of the intestinal microbiota in patients with COVID-19, including those affected by the gastrointestinal tract.

Materials and methods. In 85 patients diagnosed with a new coronavirus infection, the quantitative composition of the intestinal microbiota was assessed by the number of copies of microorganisms detected by PCR using the ENTEROFLOR test system.

Results. A study of the structural composition of the intestinal microbiome has shown that patients with diarrhea have a statistically significant excess of copies of B. longum subsp. infantis, Bif. longum subsp. longum and B. breve against the background of a decrease in Bifidobacterium spp., B. adolescentis, B. bifidum and B. senulatum. Of the representatives of gram-negative commensals, Butyricimonas spp. was active. Among the opportunistic and pathogenic flora, an increase in the number of copies of Enterobateriaceae was noted, mainly in patients with diarrhea. They also more often identified S. aureus strains with mecA and C. dificile with resistance genes cdtA and сdtB. A direct correlation was established between C. dificile and Butyricimonas spp., as well as an inverse correlation between B. catenulatum and C. dificile cdtA and сdtB, and between Bifidobacterium spp. and S. aureus mecA.

Conclusion. There is a decrease in gram-positive microorganisms among the commensals in favor of gram-negative microorganisms. Reduction of B. adolescentis and complete absence of B. bifidum and B. catenulatum in COVID-19 patients with diarrhea indicate the formation of inflammatory processes in the intestine. The transition to aerobic metabolism allows Enterobateriaceae to compete with beneficial obligate anaerobes, with the growth of strains containing resistance genes.

About the Authors

E. N. Lazareva
Central Research Institute of Epidemiology
Россия

Elena N. Lazareva, Dr. of Sci. (Med.), Senior Researcher, Clinical Department of Infectious Diseases

3a Novogireevskaya str., Moscow, 111123



V. V. Maleev
Central Research Institute of Epidemiology
Россия

Viktor V. Maleev, Dr. of Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Advisor to the Director of Scientific Work, Clinical Department of Infectious Diseases

3a Novogireevskaya str., Moscow, 111123



Zh. B. Ponezheva
Central Research Institute of Epidemiology
Россия

Zhanna B. Ponezheva, Dr. of Sci. (Med.), Head of the Clinical Department of Infectious Diseases

3a Novogireevskaya str., Moscow, 111123



N. S. Shvachkina
Infectious Diseases Clinical Hospital No. 2 of the Department of Health of the Сity of Moscow
Россия

Natalya S. Shvachkina, Infectious diseases specialist

15 8th Sokolinaya Gora str., Moscow, 105275



N. A. Tsvetkova
Infectious Diseases Clinical Hospital No. 2 of the Department of Health of the Сity of Moscow
Россия

Natalya A. Tsvetkova, Deputy Chief Physician for the Medical Department

15 8th Sokolinaya Gora str., Moscow, 105275



References

1. Borges V., Isidro J., Cunha M., et al. LongTerm Evolution of SARS-CoV-2 in an Immunocompromised Patient with Non-Hodgkin Lymphoma. mSphere. 2021; 25: 6 (4): e0024421. DOI: 10.1128/mSphere.00244-21.

2. Ghafari M., Hall M., Golubchik T., et al. Prevalence of persistent SARS-CoV-2 in a large community surveillance stud. Nature. 2024; 626 (8001): 1094-1101. DOI: 10.1038/s41586-024-07029-4.

3. D’Amico F., Baumgart D. C., Danese S., PeyrinBiroulet L. Diarrhea During COVID-19 Infection: Pathogenesis, Epidemiology, Prevention, and Management. Clin Gastroenterol Hepatol. 2020; 18 (8): 1663-1672. DOI: 10.1016/j.cgh.2020.04.001. Epub 2020 Apr 8.

4. Lyalyukova E. A. Pathogenesis of diarrhea in patients with COVID-19 and approaches to therapy. Lechaschi Vrach. 2022; (5-6): 77-83. (In Russ.) https://DOI.org/10.51793/OS.2022.25.6.014.

5. Ong J., Young B. E., Ong S. COVID-19 in gastroenterology: a clinical perspective. Gut. 2020; 69: 1144-1145. DOI: 10.1136/gutjnl-2020-321051.

6. Megyeri K., Dernovics Á., Al-Luhaibi Z. I. I., Rosztóczy A. COVID-19-associated diarrhea. World J Gastroenterol. 2021; 27 (23): 3208-3222. DOI: 10.3748/wjg.v27.i23.3208.

7. Guo Y., Luo R., Wang Y., et al. SARS-CoV-2 induced intestinal responses with a biomimetic human gut-on-chip. Sci Bull (Beijing). 2021; 66: 783-793. DOI: 10.1016/j.scib.2020.11.015.

8. Zhang J., Wang S., Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J. Med. Virol. 2020; 92: 680-682. DOI: 10.1002/jmv.25742.

9. Huang Y., Mao K., Chen X., et al. S1P-dependent interorgan traffi cking of group 2 innate lymphoid cells supports host defense. Science. 2018; 359: 114-119.

10. Kılıç A. O., Akın F., Yazar A., et al. Zonulin and claudin-5 levels in multisystem inflammatory syndrome and SARS-CoV-2 infection in children. J Paediatr Child Health. 2022. DOI: 10.1111/jpc.16033.

11. Zuo T., Zhang F., Lui G. C. Y., et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020; 159: 944-955. e8. DOI: 10.1053/j.gastro.2020.05.048.

12. Espín E., Yang C., Shannon C. P., et al. Cellular and molecular biomarkers of long COVID: a scoping review. EBioMedicine. 2023; 91: 104552. DOI: 10.1016/j.ebiom.2023.104552.

13. Hashimoto T., Perlot T., Rehman A., et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012; 487: 477-481. DOI: 10.1038/nature11228.

14. Viana S. D., Nunes S., Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities-role of gut microbiota dysbiosis. Ageing Res. Rev. 2020; 62: 101123. DOI: 10.1016/j.arr.2020.101123.

15. Reuben R. C., Beugnon R., Jurburg S. D. COVID-19 alters human microbiomes: a metaanalysis. Front Cell Infect Microbiol. 2023; 2 (13): 1211348. DOI: 10.3389/fcimb.2023.1211348.

16. Ivashkin V., Fomin V., Moiseev S., et al. Efficacy of a Probiotic Consisting of Lacticaseibacillus rhamnosus PDV 1705, Bifidobacterium bifidum PDV 0903, Bifidobacterium longum subsp. infantis PDV 1911, and Bifidobacterium longum subsp. longum PDV 2301 in the Treatment of Hospitalized Patients with COVID-19: a Randomized Controlled Trial. Probiotics Antimicrob Proteins. 2023; 15 (3): 460-468. DOI: 10.1007/s12602-021-09858-5.

17. Ding S., Liang T. J. Is SARS-CoV-2 Also an Enteric Pathogen With Potential Fecal-Oral Transmission? A COVID-19 Virological and Clinical Review. Gastroenterology. 2020; 159: 53-61. DOI: 10.1053/j.gastro.2020.04.052.

18. Li J., Si H., Du H. et al. Comparison of gut microbiota structure and Actinobacteria abundances in healthy young adults and elderly subjects: a pilot study. BMC Microbiol. 2021; 21 (1): 1-10. https://DOI.org/10.1186/s12866-020-02068-z.

19. Li H., Stanton C., Ross R. P., et al. Exopolysaccharides Produced by Bifidobacterium longum subsp. longum YS108R Ameliorates DSS-Induced Ulcerative Colitis in Mice by Improving the Gut Barrier and Regulating the Gut Microbiota. J. Agric Food Chem. 2024; 3; 72 (13): 7055-7073. DOI: 10.1021/acs.jafc.3c06421.

20. Belmer S. V. Intestinal microflora shaping factors: emphasis on lipids. Lechaschi Vrach. 2023; (1): 28-33. (In Russ.) https://DOI.org/10.51793/OS.2023.26.1.005.

21. Chichlowski M., Shah N., Wampler J. L., et al. Bifidobacterium longum Subspecies infantis (B. infantis) in Pediatric Nutrition: Current State of Knowledge. 2020; 12 (6): 1581. DOI: 10.3390/nu12061581.

22. Hickey A., Stamou P., Udayan S., et al. Bifidobacterium breve Exopolysaccharide Blocks Dendritic Cell Maturation and Activation of CD4+ T Cells. Front Microbiol. 2021; 12: 653587. DOI: 10.3389/fmicb.2021.653587.

23. Li Q., Li Y., Qiao Q., et al. Oral administration of Bifidobacterium breve improves anti-angiogenic drugs-derived oral mucosal wound healing impairment via upregulation of interleukin-10. Int J Oral Sci. 2023; 15 (1): 56. DOI: 10.1038/s41368-023-00263-y.

24. Leser T., Baker A. Bifidobacterium adolescentis – a beneficial microbe. Benef microbes. 2023; 14 (6): 525-551.DOI: 10.1163/18762891-20230030.

25. Coutzac C., Jouniaux J. M., Paci A., et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 2020; 11: 2168. DOI: 10.1038/s41467-020-16079-x.

26. Moreira de Gouveia M. I., Bernalier-Donadille A., Jubelin G. Enterobacteriaceae in the Human Gut: Dynamics and Ecological Roles in Health and Disease. Biology (Basel). 2024; 13 (3): 142. DOI: 10.3390/biology13030142.

27. Bajaj J. S., Shamsaddini A., Acharya C., et al. Multiple bacterial virulence factors focused on adherence and biofilm formation associate with outcomes in cirrhosis. Gut Microbes. 2021; 13 (1): 1993584. DOI: 10.1080/19490976.2021.1993584.

28. Kiu R., Hall L. J. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. 2018; 7 (1): 141. DOI: 10.1038/s41426-018-0144-8.

29. Coutzac C., Jouniaux J. M., Paci A., et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 2020; 11: 2168. DOI: 10.1038/s41467-020-16079-x.


Review

For citations:


Lazareva E.N., Maleev V.V., Ponezheva Zh.B., Shvachkina N.S., Tsvetkova N.A. Features of the microbiome of the gastrointestinal tract in patients with COVID-19. Lechaschi Vrach. 2025;(3):51-57. (In Russ.) https://doi.org/10.51793/OS.2025.28.3.008

Views: 172

JATS XML

ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)