Preview

Lechaschi Vrach

Advanced search

Humoral regulation of eating behavior: established and new concepts

https://doi.org/10.51793/OS.2023.26.4.003

Abstract

Understanding of the motivational factors behind food choices and eating habits is essential to combating the epidemics of obesity, diabetes, and cardiovascular disease. Eating behavior is controlled by a complex system, which includes the interaction of central and humoral links of regulation. Regarding the central mechanisms, the key role is played by the cortex and reward zones in the limbic system (″hedonic″ regulation), in which the triggers coming from the environment are analyzed: food (appearance, taste, smell of food), non-food (emotional discomfort, stress), and the hypothalamus, stimulation of the ventromedial nuclei of which is accompanied by a decrease in appetite, and stimulation is accompanied by an increase. The leading role in providing humoral (homeostatic, peripheral) regulation is played by hormones of the gastrointestinal tract and adipose tissue, which have orexigenic or anorexigenic effects, among them: ghrelin, glucagon-like peptide, obestatin, leptin, cholecystokinin, glucose-dependent insulinotropic polypeptide, secretin, peptide tyrosine-tyrosine, insulin, insulin-like peptide, neurotensin, substance P and many others. Enteroendocrine cells vary in distribution throughout the gastrointestinal tract, from the stomach to the rectum, and involve different physiological responses at each stage of the digestive process. The use of neuroimaging methods to demonstrate specific reactions in response to a food stimulus makes it possible to confirm existing humoral disorders at the ″gut – brain″ level. The study of eating hormones helps explain why cravings for certain food choices exist, how to modify these behaviors and food preferences. Knowledge of the biological mechanisms governing eating behavior will help ensure the effectiveness of the treatment of obesity and related disorders. The injection of hormones that regulate eating behavior is accompanied by the activation of the corresponding brain regions involved in the regulation of eating behavior. Personalized medicine aimed at behavioral and pharmacological correction of hormonal status disorders is a promising modern medical practice. The purpose of the review is to present new scientific data on neurohumoral mechanisms in the formation of eating behavior.

About the Authors

E. A. Ljaljukova
Federal State Budgetary Educational Institution of Higher Education Omsk State Medical University oof the Ministry of Health of the Russian Federation
Россия

Elena A. Ljaljukova - Dr. of Sci. (Med.), Professor, Professor of the Department of Internal Medicine and Family Medicine of the Faculty of Additional Professional Education.

5 Petr Nekrasov str., Omsk, 644037



Z. A. Beslangurova
Federal State Budgetary Educational Institution of Higher Education Maikop State Technological University
Россия

Zarema A. Beslangurova - MD, Associate Professor of Obstetrics and Gynecology.

177 Pushkina Str., Maykop, 385000



A. Ya. Chamokova
Federal State Budgetary Educational Institution of Higher Education Maikop State Technological University
Россия

Asiya Ya. Chamokova - MD, Associate Professor of the Department of Physiology and General Pathology.

177 Pushkina Str., Maykop, 385000



A. A. Halashte
Federal State Budgetary Educational Institution of Higher Education Maikop State Technological University
Россия

Aidamirkan A. Halashte - lecturer of the Department of Hospital Therapy and Postgraduate Education.

177 Pushkina Str., Maykop, 385000



Yu. Yu. Migunova
Federal State Budgetary Educational Institution of Higher Education Maikop State Technological University
Россия

Yuliya Yu. Migunova - Cand. of Sci. (Soc.), Associate Professor of the Department of Physiology and General Pathology.

177 Pushkina Str., Maykop, 385000



References

1. Kuchma V. R., Gorelova Zh. Yu. Evaluation of the usefulness and adequacy of nutrition, correction of the actual dietary intake: Educational and methodological manual. 2014 g.]

2. World Health Organization. Obesity: preventing and managing the global epidemic. 1997, Geneva: WHO.

3. Kemps E., Herman C. P., Hollitt S., et al. The role of expectations in the effect of food cue exposure on intake // Appetite. 2016; 103: 259-264. DOI: 10.1016/j.appet.2016.04.026.

4. Travagli R. A., Anselmi L. Vagal neurocircuitry and its influence on gastric motility // Nature Reviews Gastroenterology & Hepatology. 2016; 13 (7): 389-401. DOI: 10.1038/nrgastro.2016.76.

5. Ziauddeen H., Alonso-Alonso M., Hill J. O., et al. Obesity and the Neurocognitive Basis of Food Reward and the Control of Intake // Advances in Nutrition. 2015; 6 (4): 474-486. DOI: 10.3945/an.115.008268.

6. Engel J. A., Jerlhag E. Role of Appetite-Regulating Peptides in the Pathophysiology of Addiction: Implications for Pharmacotherapy // CNS Drugs. 2014; 28 (10): 875-886. DOI: 10.1007/s40263-014-0178-y.

7. Adamska E., Ostrowska L., Górska M., Krętowski A. The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes // Gastroenterology Review. 2014; 2: 69-76. DOI: 10.5114/pg.2014.42498.

8. Howick K., Griffin B., Cryan J., Schellekens H. From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation // International Journal of Molecular Sciences. 2017; 18 (12): 273. DOI: 10.3390/ijms18020273.

9. Shiiya T. Plasma Ghrelin Levels in Lean and Obese Humans and the Effect of Glucose on Ghrelin Secretion // J. Clin. Endocrinol. Metab. 2002; 87 (1): 240-244. DOI: 10.1210/jcem.87.1.8129.

10. Nakazato M., Murakami N., Date Y., et al. A role for ghrelin in the central regulation of feeding // Nature. 2001; 409: 194-198.

11. Callahan H. S., Cummings D. E., Pepe M. S., Breen P. A., Matthys C. C., Weigle D. S. Postprandial suppression of plasma ghrelin level is proportional to ingested caloric load but does not predict intermeal interval in humans // J Clin Endocrinol Metab. 2004; 89: 1319-1324.

12. St-Pierre D. H., Rabasa-Lhoret R., Lavoie M. E., et al. Fiber intake predicts ghrelin levels in overweight and obese postmenopausal women. European journal of endocrinology // European Federation of Endocrine Societies. 2009; 161 (1): 65-72. DOI: 10.1530/eje-09-0018.

13. St-Pierre D. H., Karelis A. D., Coderre L., et al. Association of Acylated and Nonacylated Ghrelin with Insulin Sensitivity in Overweight and Obese Postmenopausal Women // J. Clin. Endocr. Metab. 2007; 92 (1): 264-269. DOI: 10.1210/jc.2006-1603.

14. Mannucci E., Tesi F., Ricca V., et al. Eating behavior in obese patients with and without type 2 diabetes mellitus // Int. J. Obes. 2002; 26 (6): 848-853. DOI: 10.1038/sj.ijo.0801976.

15. Blevins J. E., Stanley B. G., Reidelberger R. D. Brain regions where cholecystokinin suppresses feeding in rats // Brain Res. 2000; 860: 1-10.

16. Crespi F. The role of cholecystokinin (CCK), CCK-A or CCK-B receptor antagonists in the spontaneous preference for drugs of abuse (alcohol or cocaine) in naive rats // Methods Find Exp Clin Pharmacol. 1998; 20: 679-697.

17. Bowers M. E., Choi D. C., Ressler K. J. Neuropeptide regulation of fear and anxiety: Implications of cholecystokinin, endogenous opioids, and neuropeptide // Y. Physiol Behav. 2012; 107: 699-710.

18. Ronveaux C. C., Tomé D., Raybould H. E. Glucagon-Like Peptide 1 Interacts with Ghrelin and Leptin to Regulate Glucose Metabolism and Food Intake through Vagal Afferent Neuron Signaling // The Journal of Nutrition. 2015; 145 (4): 672-680. DOI: 10.3945/jn.114.206029.

19. Covasa M., Swartz T. The Role of Glucagon-Like Peptide-1 (Glp-1) in Eating Behavior. 2011: 189-201. DOI: 10.1007/978-0-387-92271-3_14.

20. Rask E., Olsson T., Soderberg S., et al. Impaired Incretin Re-sponse After a Mixed Meal Is Associated With Insulin Resistance in Nondiabetic Men // Diabetes Care. 2001; 24 (9): 1640-1645. DOI: 10.2337/diacare.24.9.1640.

21. Mietlicki-Baase E. G., Ortinski P. I., Rupprecht L. E., Olivos D. R., Alhadeff A. L., Pierce R. C., Hayes M. R. The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors // Am J Physiol Endocrinol Metab. 2013; 305: E1367-E1374.

22. Vallöf D., Vestlund J., Jerlhag E. Glucagon-like peptide-1 receptors within the nucleus of the solitary tract regulate alcohol-mediated behaviors in rodents // Neuropharmacology. 2019; 149: 124-132.

23. Tuesta L. M., Chen Z., Duncan A., Fowler C. D., Ishikawa M., Lee B. R., Liu X. A., Lu Q., Cameron M., Hayes M. R., Kamenecka T. M., Pletcher M., Kenny P. J . GLP-1 acts on habenular avoidance circuits to control nicotine intake // Nature Neurosci. 2017; 20: 708-716.

24. Fortin S. M., Lipsky R. K., Lhamo R., Chen J., Kim E., Borner T., Schmidt H. D., Hayes M. R. GABA neurons in the nucleus tractus solitarius express GLP-1 receptors and mediate anorectic effects of liraglutide in rats // Sci Translat Med. 2020; 12: eaay8071.

25. Basolo A., Heinitz S., Stinson E. J, Begaye B., Hohenadel M., Piaggi P., Krakoff J., Votruba S. B. Fasting glucagon-like peptide 1 concentration is associated with lower carbohydrate intake and increases with overeating // J Endocrinol Invest. 2019; 42: 557-566.

26. Chao A. M., Wadden T. A., Walsh O. A., Gruber K. A., Alamuddin N., Berkowitz R. I., Tronieri J. S. Effects of liraglutide and behavioral weight loss on food cravings, eating behaviors, and eating disorder psychopathology // Obesity. 2019; 27: 2005-201.

27. Zhang J. V., Ren P. G., Avsian-Kretchmer O., et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake // Science. 2005; 310: 996-999.

28. Baron M., Froguel P., Bonnefond A. Du nouveau dans la génétique des formes monogéniques d’obésité et son impact pour mieux en comprendre la physiopathologie [Something new in the genetics of monogenic obesity and its insights into pathophysiology] // Med Sci (Paris). 2020; 36 (10): 859-865. French. DOI: 10.1051/medsci/2020156. Epub 2020 Oct 7. PMID: 33026327.

29. Dockray G. J. Cholecystokinin and gut-brain signalling // Regul Pept. 2009; 155 (1-3): 6-10.

30. Buchan A. M., Polak J. M., Capella C., Solcia E., Pearse A. G. Electronimmunocytochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) in man // Histochemistry. 1978; 56: 37-44.

31. Nam Koong C., Kim M. S., Jang B. T., Lee Y. H., Cho Y. M., Choi H. J. Central administration of GLP-1 and GIP decreases feeding in mice // Biochem Biophys Res Commun. 2017; 490: 247-252.

32. Cui J., Shang A., Wang W., Chen W. Rational design of a GLP-1/GIP/Gcg receptor triagonist to correct hyperglycemia, obesity and diabetic nephropathy in rodent animals // Life Sci. 2020; 260: 118339.

33. Svendsen B., Capozzi M. E., Nui J., Hannou S. A., Finan B., Naylor J., Ravn P., D'Alessio D. A., Campbell J. E. Pharmacological antagonism of the incretin system protects against diet-induced obesity // Mol Metab. 2020; 32: 44-55.

34. Bayliss W. M., Starling E. H. The mechanism of pancreatic secretion // J Physiol. 1902; 28: 325-353.

35. Charlton C. G., O'Donohue T. L., Miller R. L., Jacobowitz D. M. Secretin immunoreactivity in rat and pig brain // Peptides. 1981; 2 (Suppl 1): 45-49.

36. Anil M. H., Forbes J. M. Effects of insulin and gastro-intestinal hormones on feeding and plasma insulin levels in sheep // Hormone Metab Res. 1980; 12: 234-236.

37. Cheng C. Y., Chu J. Y., Chow B. K. Central and peripheral administration of secretin inhibits food intake in mice through the activation of the melanocortin system // Neuropsychopharmacology. 2011; 36: 459-471.


Review

For citations:


Ljaljukova E.A., Beslangurova Z.A., Chamokova A.Ya., Halashte A.A., Migunova Yu.Yu. Humoral regulation of eating behavior: established and new concepts. Lechaschi Vrach. 2023;(4):23-28. (In Russ.) https://doi.org/10.51793/OS.2023.26.4.003

Views: 199

JATS XML

ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)