Preview

Лечащий Врач

Расширенный поиск

Роль пробиотиков в формировании микробиоты кишечника у детей

https://doi.org/10.26295/OS.2020.85.98.001

Полный текст:

Аннотация

Кишечная микробиота (КМ) играет ключевую роль в процессах ферментации олигосахаридов, в модуляции иммунитета и в защите от условно-патогенных микроорганизмов. Колонизация пищеварительного тракта новорожденного начинается с участия вагинальной флоры матери и продолжается благодаря участию олигосахаридов грудного молока. Как бифидобактерии, так и лактобациллы являются наиболее распространенными представителями КМ и оказывают различные физиологические эффекты. Новое комбинированное пробиотическое средство содержит штаммы B. breve BR-03 и L. rhamnosus GG. Обсуждаются показания и клинические аспекты его назначения.

Об авторе

С. Г. Грибакин
ФГБОУ ДПО РМАНПО МЗ РФ
Россия


Список литературы

1. Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J. et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota // Microbiol Mol Biol Rev. 2017; 81 (4).

2. Penders J., Thijs C., Vink C., Stelma F. F., Snijders B., Kummeling I. et al. Factors influencing the composition of the intestinal microbiota in early infancy // Pediatrics. 2006; 118 (2): 511-521.

3. Ley R. E., Hamady M., Lozupone C., Turnbaugh P. J., Ramey R. R., Bircher J. S. et al. Evolution of mammals and their gut microbes // Science. 2008; 320 (5883): 1647-1651.

4. Munyaka P. M., Khafipour E., Ghia J. E. External influence of early childhood establishment of gut microbiota and subsequent health implications // Front Pediatr. 2014; 2: 109.

5. Saavedra J. M., Dattilo A. M. Early development of intestinal microbiota: implications for future health // Gastroenterol Clin N Am. 2012; 41 (4): 717-731.

6. Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O. Development of the human infant intestinal microbiota // PLoS Biol. 2007; 5 (7): e177.

7. Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R. et al. Succession of microbial consortia in the developing infant gut microbiome // Proc Natl Acad Sci USA. 2011; 108 (Suppl. 1): 4578-4585.

8. Wong J. M., de Souza R., Kendall C. W., Emam A., Jenkins D. J. Colonic health: fermentation and short chain fatty acids // J Clin Gastroenterol. 2006; 40 (3): 235-243.

9. Hopkins M. J., Macfarlane G. T., Furrie E., Fite A., Macfarlane S. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses // FEMS Microbiol Ecol. 2005; 54 (1): 77-85.

10. Gill S. R., Pop M., Deboy R. T., Eckburg P. B., Turnbaugh P. J., Samuel B S. et al. Metagenomic analysis of the human distal gut microbiome // Science. 2006; 312 (5778): 1355-1359.

11. Rajilic-Stojanovic M., Smidt H., de Vos W. M. Diversity of the human gastrointestinal tract microbiota revisited // Environ Microbiol. 2007; 9 (9): 2125-2136.

12. Turroni F., Peano C., Pass D. A., Foroni E., Severgnini M., Claesson M. J. et al. Diversity of Bifidobacteria within the infant gut microbiota // PLoS One. 2012; 7 (5): e36957.

13. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M. et al. Diversity of the human intestinal microbial flora // Science. 2005; 308 (5728): 1635-1638.

14. Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body // PLoS Biol. 2016; 14 (8): e1002533.

15. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C. et al. A human gut microbial gene catalogue established by metagenomic sequencing // Nature. 2010; 464 (7285): 59-65.

16. Kaplan J. L., Shi H. N., Walker W. A. The role of microbes in developmental immunologic programming // Pediatr Res. 2011; 69 (6): 465-72.

17. Gaboriau-Routhiau V., Rakotobe S., Lecuyer E., Mulder I., Lan A., Bridonneau C. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses // Immunity. 2009; 31 (4): 677-689.

18. Mazmanian S. K., Round J. L., Kasper D. L. A microbial symbiosis factor prevents intestinal inflammatory disease // Nature. 2008; 453 (7195): 620-625.

19. Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y. et al. Induction of colonic regulatory T cells by indigenous Clostridium species // Science. 2011; 331 (6015): 337-341.

20. Penders J., Thijs C., Vink C., Stelma F. F., Snijders B., Kummeling I. et al. Factors influencing the composition of the intestinal microbiota in early infancy // Pediatrics. 2006; 118 (2): 511-521.

21. Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R. et al. Succession of microbial consortia in the developing infant gut microbiome // Proc Natl Acad Sci USA. 2011; 108 (Suppl 1): 4578-4585.

22. Kalliomaki M., Salminen S., Arvilommi H., Kero P., Koskinen P., Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebocontrolled trial // Lancet. 2001; 357 (9262): 1076-1079.

23. Penders J., Thijs C., van den Brandt P. A., Kummeling I., Snijders B., Stelma F. et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study // Gut. 2007; 56 (5): 661-667.

24. Wang M., Karlsson C., Olsson C., Adlerberth I., Wold A. E., Strachan D. P. et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema // J Allergy Clin Immunol. 2008; 121 (1): 129-134.

25. Nylund L., Nermes M., Isolauri E., Salminen S., de Vos W. M., Satokari R. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria // Allergy. 2015; 70 (2): 241-244.

26. Simonyte Sjodin K., Vidman L., Ryden P., West C. E. Emerging evidence of the role of gut microbiota in the development of allergic diseases // Curr Opin Allergy Clin Immunol. 2016; 16 (4): 390-395.

27. Fujimura K. E., Sitarik A. R., Havstad S., Lin D. L., Levan S., Fadrosh D. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation //. Nat Med. 2016; 22 (10): 1187-1191.

28. Ismail I. H., Boyle R. J., Licciardi P. V., Oppedisano F., Lahtinen S., Robins-Browne R. M. et al. Early gut colonization by Bifidobacterium breve and B. catenulatum differentially modulates eczema risk in children at high risk of developing allergic diseas //. Pediatr Allergy Immunol. 2016; 27 (8): 838-846.

29. Isolauri E., Arvola T., Sutas Y., Moilanen E., Salminen S. Probiotics in the management of atopic eczema // Clin Exp Allergy. 2000; 30 (11): 1604-1610.

30. Feehley T., Plunkett C. H., Bao R. Y., Hong S. M. C., Culleen E., Belda-Ferre P. et al. Healthy infants harbor intestinal bacteria that protect against food allergy // Nat Med. 2019; 25 (3): 448.

31. Johnson C. C., Ownby D. R. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases // Transl Res. 2017; 179: 60-70.

32. Johnson C. C., Ownby D. R. Allergies and asthma: do atopic disorders result from inadequate immune homeostasis arising from infant gut Dysbiosis? // Expert Rev Clin Immunol. 2016; 12 (4): 379-388.

33. Azad M. B., Kozyrskyj A. L. Perinatal programming of asthma: the role of gut microbiota // Clin Dev Immunol. 2012; 2012: 932072.

34. Arrieta M. C., Stiemsma L. T., Dimitriu P. A., Thorson L., Russell S., Yurist-Doutsch S. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma // Sci Transl Med. 2015; 7 (307): 307ra152.

35. Abrahamsson T. R., Jakobsson H. E., Andersson A. F., Bjorksten B., Engstrand L., Jenmalm M. C. Low gut microbiota diversity in early infancy precedes asthma at school age // Clin Exp Allergy. 2014; 44 (6): 842-850.

36. Stiemsma L. T., Arrieta M. C., Dimitriu P. A., Cheng J., Thorson L., Lefebvre D. L. et al. Shifts in Lachnospira and Clostridium sp. in the 3-month stool microbiome are associated with preschool age asthma // Clin Sci. 2016; 130 (23): 2199-2207.

37. Picard C., Fioramonti J., Francois A., Robinson T., Neant F., Matuchansky C. Review article: bifidobacteria as probiotic agents - physiological effects and clinical benefits // Aliment Pharmacol Ther. 2005, 22: 495-512.

38. Egan M., O’Connell Motherway M., Ventura M., van Sinderen M. Genetics and Molecular Biology Metabolism of Sialic Acid by Bifidobacterium breve // Environ. Microbiol 2014, 80: 14, 4414-4426.

39. Tabbers M. M., de Milliano I., Roseboom M. G., Benninga M. A. Is Bifidobacterium breve effective in the treatment of childhood constipation? Results from a pilot study // Nutr J. 2011, 10: 19.

40. Mayo B. Bifidobacteria: Genomics and molecular aspects. Norfolk, UK: Caister Academic, 2010.

41. Fushinobu S. Unique Sugar Metabolic Pathways of Bifidobacteria // Bioscience, Biotechnology and Biochemistry. 2010, 74 (12), 2374-2384.

42. Захарова И. Н., Борзова Е. Ю., Симакова М. А. Lactobacillus rhamnosus GG: опыт применения в детской гастроэнтерологической практике // Российский вестник перинатологии и педиатрии. 2019; 64 (6): 20-29.

43. Грибакин С. Г., Тимофеева А. Г., Боковская О. А. Пробиотик Lactobacillus rhamnosus GG (LGG®): что мы знаем об эффективности и безопасности? // Лечащий Врач. 2019, № 4, 92-95.

44. Макарова С. Г., Намазова-Баранова Л. С., Ерешко О. А., Ясаков Д. С., Садчиков П. Е. Кишечная микробиота и аллергия. Про- и пребиотики в профилактике и лечении аллергических заболеваний // Педиатрическая фармакология. 2019; 16 (1): 7-18.


Рецензия

Для цитирования:


Грибакин С.Г. Роль пробиотиков в формировании микробиоты кишечника у детей. Лечащий Врач. 2020;(4):7. https://doi.org/10.26295/OS.2020.85.98.001

For citation:


Gribakin S.G. Role of pribiotics for intestinal microbiota formation in children. Lechaschi Vrach. 2020;(4):7. (In Russ.) https://doi.org/10.26295/OS.2020.85.98.001

Просмотров: 58


Creative Commons License
Контент доступен под лицензией Attribution-NonCommercial-NoDerivatives 4.0 International.


ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)