МикроРНК как предиктор сердечно-сосудистых заболеваний
Аннотация
Сердечно-сосудистые заболевания, особенно ишемическая болезнь сердца (ИБС), являются наиболее распространенными заболеваниями во всем мире. Более 50% смертности приходится на данную патологию. В последние десятилетия существует тенденция к «омоложению» сердечно-сосудистых заболеваний – прежде всего гипертонической болезни и ИБС, что вызывает особую тревогу. Общепризнано, что основным этиологическим моментом развития ИБС является атеросклероз. ИБС включает в себя целый ряд клинических диагнозов (стенокардия, инфаркт миокарда и т. д.) и связана с атеросклерозом, распространенным дегенеративным заболеванием, при котором липиды и фиброзный матрикс откладываются в артериальной стенке с формированием атероматозной бляшки. Разрыв нестабильных бляшек в коронарных артериях приводит к высвобождению тромбогенного содержимого в просвет сосуда, приводя к тромбозу коронарных артерий, окклюзии и последующему инфаркту миокарда – критическому состоянию с высокой смертностью [5]. Несмотря на большое количество известных факторов риска, влияющих на развитие данного заболевания, существуют данные, подтвержденные крупными исследованиями, о наличии генетической предрасположенности к нему.
Об авторах
У. А. ХалиловаРоссия
Волгоград
В. В. Скворцов
Россия
доктор медицинских наук
Волгоград
Список литературы
1. Parahuleva M. S., Euler G., Mardini A. et al. Identification of microRNAs as potential cellular monocytic biomarkers in the early phase of myocardial infarction: a pilot study // Scientific Reports. 2017; 7 (1): 15974.
2. Wu A. H. B., Christenson R. H., Greene D. N., Jaffe A. S., Kavsak P. A., Ordonez-Llanos J., Apple F. S. Clinical laboratory practice recommendations for the use of cardiac troponin in acute coronary syndrome: expert opinion from the Academy of theAmerican Association for clinical chemistry and the task force on clinical applications of cardiac bio-markers of the International Federation of clinical chemistry and laboratory medicine // Clin. Chem. 2018; 64: 645-655.
3. Thygesen K. What’s new in the fourth universal definition of myocardial infarction? // Eur. Heart J. 2018; 39: 3757-3758.
4. De Filippi C., Seliger S. The cardiac troponin renal disease diagnostic conundrum: past, present, and future // Circulation. 2018; 137: 452-454.
5. Gori M., Senni M., Metra M. High-sensitive cardiac troponin for prediction of clinical heart failure: are we ready for prime time? // Circulation. 2017; 135: 1506-1508.
6. Seliger S. L., Hong S. N., Christenson R. H., Kronmal R., Daniels L. B., Lima J. A. C., de Lemos J. A., Bertoni A., de Filippi C. R. High-sensitive cardiac troponin T as anearly biochemical signature for clinical and subclinical heart failure: MESA (multiethnic study of atherosclerosis) // Circulation. 2017; 135: 1494-1505.
7. Thygesen K., Alpert J. S., Jaffe A. S., Chaitman B. R., Bax J. J., Morrow D. A., White H. D. Fourth universal definition of myocardial infarction // Circulation. 2018; 138: e618-e651.
8. Clerico A., Zaninotto M., Ripoli A., Masotti S., Prontera C., Passino C., Plebani M. The 99th percentile of reference population for cTnI and cTnT assay: methodology, pathophysiology and clinical implications // Clin. Chem. Lab. Med. 2017; 55: 1634-1651.
9. Cavender M. A., White W. B., Jarolim P., Bakris G. L., Cushman W. C., Kupfer S., Gao Q., Mehta C. R., Zannad F., Cannon C. P., Morrow D. A. Serial measurement of high-sensitivity troponin I and cardiovascular outcomes in patients with type 2 diabetes mellitus in the EXAMINE trial (examination of cardiovascular outcomes with alogliptin versus standard of care) // Circulation. 2017; 135: 1911-1921.
10. Sze J., Mooney J., Barzi F., Hillis G. S., Chow C. K. Cardiac troponin and its relationship to cardiovascular outcomes in community populations a systematic review and meta-analysis // Heart Lung Circ. 2016; 25: 217-228.
11. Willeit P., Welsh P., Evans J. D. W., Tschiderer L., Boachie C., Jukema J. W., Ford I., Trompet S., Stott D. J., Kearney P. M., Mooijaart S. P., Kiechl S., Di Angelantonio E., Sattar N. High-sensitivity cardiac troponin concentration and risk of first-ever cardiovascular outcomes in 154,052 participants // J. Am. Coll. Cardiol. 2017; 70: 558-568.
12. Marjot J., Kaier T. E., Martin E. D., Reji S. S., Copeland O., Iqbal M., Goodson B., Hamren S., Harding S. E., Marber M. S. Quantifying the release of biomarkers of myocardial necrosis from cardiac myocytes and intact myocardium // Clin. Chem. 2017; 63: 990-996.
13. Sorensen N. A., Neumann J. T., Ojeda F., Schwemer T., Renne T., Schnabel R. B., Zeller T., Karakas M., Blankenberg S., Westermann D. Challenging the 99th percentile: a lower troponin cutoff leads to lowmortality of chest pain patients // Int. J. Cardiol. 2017; 232: 289-293.
14. Bustin S. A., Wittwer C. T. MIQE: a step toward more robust and reproducible quantitative PCR // Clin. Chem. 2017; 63: 1537-1538.
15. Chiarella-Redfern H. H., Rayner K. J., Suuronen E. J. Spatio-temporal expression patterns of microRNAs in remodelling and repair of the infarcted heart // Histol. Histopathol. 2015; 30: 141-149.
16. Chiarella-Redfern H. H., Rayner K. J., Suuronen E. J. Spatio-temporal expression patterns of microRNAs in remodelling and repair of the infarcted heart // Histol. Histopathol. 2015; 30: 141-149.
17. Benning L., Robinson S., Follo M., Heger L. A., Stallmann D., Duerschmied D., Hortmann M. Digital PCR for quantifying circulating microRNAs in acute myocardial infarction and cardiovascular disease // Journal of Visualized Experiments. 2018; 137: e57950.
18. Gallo W., Esguerra J. L. S., Eliasson L., Melander O. miRNA483-5p associates with obesity and insulin resistance and independently associates with new onset diabetes mellitus and cardiovascular disease // PLOS One. 2018; 13, e206974.
19. Hollander J. E., Than M., Mueller C. State-of-the-art evaluation of emergency department patients presenting with potential acute coronary syndromes // Circulation. 2016; 134: 547-564.
20. Ibanez B., James S., Agewall S., Antunes M. J. Bucciarelli-Ducci, C., Bueno, H., ESC Scientific Document Group, A. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) // European Heart Journal. 2018; 39: 119-177.
21. Katta S., Karnewar S., Panuganti D., Jerald M. K., Sastry B. K. S., Kotamraju S. Mitochondria-targeted esculetin inhibits PAI-1 levels by modulating STAT3 activation and miR-19b via SIRT3: Role in acute coronary artery syndrome // Journal of Cellular Physiology. 2018; 233: 214-225.
22. Leistner D. M., Boeckel J. N., Reis S. M., Thome C. E., De Rosa R., Keller T., Zeiher A. M. Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics // European Heart Journal, 2016; 37, 1738-1749.
23. Li X., Kong D., Chen H., Liu S., Hu H., Wu T., Lu Z. miRNA155 acts as an antiinflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1 // Scientific Reports, 2016; 6: 21789.
24. Li S., Lee C., Song J., Lu C., Liu J., Cui Y., Chen H. Circulating microRNAs as potential biomarkers for coronary plaque rupture // Oncotarget. 2017; 8: 48145-48156.
25. Robinson S., Follo M., Haenel D., Mauler M., Stallmann D., Tewari M., Hortmann M. Droplet digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction // International Journal of Cardiology. 2018; 257: 247-254.
26. Roffi M., Patrono C., Collet J. P., Mueller C., Valgimigli M., Andreotti F., ESC Scientific Document Group, J. J. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC) // European Heart Journal. 2016; 37: 267-315.
27. Wang K. J., Zhao X., Liu Y. Z., Zeng Q. T., Mao X. B., Li S. N., Chen Z. J. Circulating MiRNA19b-3p, MiRNA134-5p, and MiRNA186-5p are promising novel biomarkers for early diagnosis of acute myocardial Infarction // Cellular Physiology and Biochemistry. 2016; 38: 1015-1029.
28. Zhirov I. V., Kochetov A. G., Zaseeva A. V. et al. MicroRNA in the diagnosis of chronic heart failure: state of the problem and the results of a pilot study // Systemic Hypertension. 2016; 13 (1): 39-46.
29. Kochetov A. G., Lyang O. V., Gimadiev R. R. et al. Expression of circulating microRNA in chronic heart failure in patients with cardiovascular pathologies // Laboratory Services. 2016; 1: 26-32.
30. Rupaimoole R., Slack F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases // Nat Rev Drug Discov. 2017; 16: 203-222.
31. Kervadec A., Bellamy V., El Harane N., Arakélian L., Vanneaux V., Cacciapuoti I., et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure // J Heart Lung Transplant. 2016; 35: 795-807.
32. Joanne P., Kitsara M., Boitard S.-E., Naemetalla H., Vanneaux V., Pernot M., et al. Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy // Biomaterials. 2016; 80: 157-168.
33. Liu X., Yuan L., Chen F., Zhang L., Chen X., Yang C., et al. Circulating miR-208b:a potentially sensitive and reliable biomarker for the diagnosis and prognosis of acute myocardial infarction // Clin Lab. 2017; 63: 101-109.
34. Zhang W. Q., Xie B. Q. A meta-analysis of the relations between blood microRNA-208b detection and acute myocardial infarction // Eur Rev Med Pharmacol Sci. 2017; 21 (4): 848-854.
35. Wang Q., Ma J., Jiang Z., Wu F., Ping J., Ming L. Identification of microRNAs as diagnostic biomarkers for acute myocardial infarction in Asian populations: a systematic review and meta-analysis // Medicine (Baltimore). 2017; 96: e7173.
36. Yuan L., Liu X., Chen F., Zhang L., Chen X., Huang Q., et al. Diagnostic and prognostic value of circulating microRNA-133a in patients with acute myocardial infarction // Clin Lab. 2016; 62: 1233-1241.
37. Cortez-Dias N., Costa M. C., Carrilho-Ferreira P., Silva D., Jorge C., Calisto C., et al. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction // Circ J. 2016; 80: 2183-2191.
38. Truscott M., Islam A. B., Frolov M. V. Novel regulation and functional interaction of polycistronic miRNAs // RNA. 2016; 22: 129-138.
39. Dall C., Khan M., Chen C.-A., Angelos M. G. Oxygen cycling to improve survival of stem cells for myocardial repair: a review // Life Sci. 2016; 153: 124-131.
40. Zong L., Zhu Y., Liang R., Zhao H-B. Gap junction mediated miRNA intercellular transfer and gene regulation: a novel mechanism for intercellular genetic communication // Sci Rep. 2016; 6: 19884.
41. Danese E., Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome // Ann Transl Med. 2016; 4: 194.
42. García-Giménez J. L., Mena-Mollá S., Beltrán-García J., Sanchis-Gomar F. Challenges in the analysis of epigenetic biomarkers in clinical samples // Clin Chem Lab Med. 2017; 55 (10): 1474-1477.
43. Nagalingam R. S., Safi H. A., Czubryt M. P. Gaining myocytes or losing fibroblasts: challenges in cardiac fibroblast reprogramming for infarct repair // J Mol Cell Cardiol. 2016; 93: 108-114.
44. Rizzacasa B., Morini E., Mango R. et al. miR-423 is differentially expressed in patients with stable and unstable coronary artery disease: a pilot study // PLoS One. 2019; 14 (5): e0216363.
45. Poller W., Dimmeler S., Heymans S. et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives // European Heart Journal. 2018; 39 (29): 2704-2716.
46. Zhu L., Liu F., Xie H., J. Feng Diagnostic performance of microRNA-133a in acute myocardial infarction: a metaanalysis // Cardiology Journal. 2018, vol. 25.
47. Liu G., Niu X., Meng X., Zhang Z. Sensitive miRNA markers for the detection and management of NSTEMI acute myocardial infarction patients // Journal of Thoracic Disease. 2018; 10 (6): 3206-3215.
48. Xue S., Liu D., Zhu W. et al. Circulating miR-17-5p, miR-126-5p and miR-145-3p are novel biomarkers for diagnosis of acute myocardial infarction // Frontiers in Physiology. 2019; vol. 10.
49. Xue S., Zhu W., Liu D. et al. Circulating miR-26a-1, miR-146a and miR-199a-1 are potential candidate biomarkers for acute myocardial infarction // Molecular Medicine. 2019; 25 (1): 18.
50. Fan P. C., Chen C. C., Peng C. C. et al. A circulating miRNA signature for early diagnosis of acute kidney injury following acute myocardial infarction // Journal of Translational Medicine. 2019; 17 (1): 139.
51. Khan J., Lieberman J. A., Lockwood C. M. Variability in, variability out: best practice recommendations to standardize pre-analytical variables in the detection of circulating and tissue microRNAs // Clin Chem Lab Med. 2017; 55: 608-621.
Рецензия
Для цитирования:
Халилова У.А., Скворцов В.В. МикроРНК как предиктор сердечно-сосудистых заболеваний. Лечащий Врач. 2021;(7):34-38. https://doi.org/10.51793/OS.2021.24.7.007
For citation:
Khalilova U.A., Skvortsova V.V. Micro-RNA as a predictor of cardiovascular diseases. Lechaschi Vrach. 2021;(7):34-38. (In Russ.) https://doi.org/10.51793/OS.2021.24.7.007