Cardiovascular consequences of COVID-19: pathogenesis, diagnosis and treatment
https://doi.org/10.51793/OS.2021.24.7.002
Abstract
The paper presents an overview of the scientific literature containing data on the pathogenesis, diagnosis and treatment of cardiovascular consequences of a new coronavirus infection. Heart damage is observed in 7-28% of hospitalized patients with COVID-19. Myocardial damage when exposed to coronavirus infection can be realized through two pathological mechanisms: direct myocardial damage due to the interaction of SARS-CoV-2 with myocardial ACE2 receptors, as well as indirect myocardial damage, which can be caused by cytokines and other pro-inflammatory factors, microcirculation disorders, hypoxic changes cardiomyocytes. Frequent arrhythmic complications of COVID-19 are atrial fibrillation and ventricular premature beats. Despite numerous publications on heart damage in the acute phase of this disease, data on disorders remaining after recovery are insufficient, there are no clinical recommendations for the management of such patients. Based on the given clinical case, mechanisms of combination therapy of bisoprolol and amlodipine of frequent ventricular extrasystolia, which arose after COVID-19, are described.
About the Authors
L. V. MelnikovaРоссия
Moscow
T. V. Lokhina
Россия
Penza
N. V. Berenshtein
Россия
Penza
M. G. Ivanchukova
Россия
Penza
References
1. Akhmerov A., Marbán E. COVID-19 and the heart // Circ. Res. 2020; 126: 1443-1455.
2. Liu P. P., Blet A., Smyth D. et all. The science underlying COVID-19: implications for the cardiovascular system // Circulation. 2020; 142: 68-78.
3. Wang D., Hu B., Hu C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China // JAMA. 2020; 323 (11): 1061-1069.
4. Guo T., Fan Y., Chen M. et all. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) // JAMA Cardiol. 2020; 5 (7): 811-818.
5. Shi S., Qin M., Shen B. et all. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China // JAMA Cardiol. 2020; 5 (7): 802-810.
6. Richter D., Guasti L., Koehler F. et all. Late phase of COVID-19 pandemic in General Cardiology. A position paper of the ESC Council for Cardiology Practice // ESC Heart Fail. 2021 Jun 25.
7. Goërtz Y. M. J., Van Herck M., Delbressine J. M. et all. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? // ERJ Open Res. 2020 Oct 26; 6 (4): 00542-2020.
8. Mitrani R. D., Dabas N., Goldberger J. J. COVID-19 cardiac injury: Implications for long-term surveillance and outcomes in survivors // Heart Rhythm. 2020; 17 (11): 1984-1990.
9. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (UK); 2020 Dec 18.
10. Zheng Y., Ma Y., Zhang J. et all. COVID-19 and the cardiovascular system // Nat Rev Cardiol. 2020; 17: 259-260.
11. Huang C., Wang Y., Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020; 6736: 1-10.
12. Kochi A. N., Tagliari A. P., Forleo G. B. et all. Cardiac and arrhythmic complications in patients with COVID-19 // J Cardiovasc Electrophysiol. 2020; 31 (5): 1003-1008.
13. Chorin E., Wadhwani L., Magnani S. et all. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/ azithromycin // Heart Rhythm. 2020; 17 (9): 1425-1433.
14. Danta C.C. Calcium Channel Blockers: A Possible Potential Therapeutic Strategy for the Treatment of Alzheimer's Dementia Patients with SARS-CoV-2 Infection. // ACS Chem Neurosci. 2020 Aug 5; 11(15): 2145-2148.
15. Porzionato A., Emmi A., Barbon S. et all. Sympathetic activation: a potential link between comorbidities and COVID-19 // FEBS J. 2020; 287(17): 3681-3688.
16. Talasaz A. H., Kakavand H., Van Tassell B. et all. Cardiovascular Complications of COVID-19: Pharmacotherapy Perspective // Cardiovasc Drugs Ther. 2021; 35 (2): 249-259.
17. Suthahar N., Meijers W.C., Sillje H.H.W. et all. From inflammation to fibrosis-molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities // Curr Heart Fail Rep. 2017; 14: 235-250.
18. Huang L., Zhao P., Tang D. et all. Cardiac Involvement in Patients Recovered From COVID-2019 Identified Using Magnetic Resonance Imaging // JACC Cardiovasc Imaging. 2020; 13 (11): 2330-2339.
19. Puntmann V. O., Carerj M. L., Wieters I. et all. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19) // JAMA Cardiol. 2020; 5 (11): 1265-1273.
20. Kociol R. D., Cooper L. T., Fang J. C. Recognition and initial management of fulminant myocarditis: a scientific statement from the American Heart Association // Circulation. 2020; 141: e69-e92.
21. Siripanthong B., Nazarian S., Muser D., et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management // Heart Rhythm. 2020; 17 (9): 1463-1471.
22. Lakkireddy D. R., Chung M. K., Gopinathannair R. et all. Guidance for cardiac electrophysiology during the COVID-19 pandemic from the Heart Rhythm Society COVID-19 Task Force; Electrophysiology Section of the American College of Cardiology; and the Electrocardiography and Arrhythmias Committee of the Council on Clinical Cardiology, American Heart Association // Heart Rhythm. 2020; 17 (9): e233-e241.
23. Kang J., Wang L., Chen X-L. et al. Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K + channel HERG // Mol. Pharmacol. 2001; 59: 122-126.
24. Ray W. A., Murray K. T., Hall K. et al. Azithromycin and the risk of cardiovascular death // N. Engl. J. Med. 2012; 366 (20): 1881-1890.
25. Ostroumova O. D. Udlineniye intervala QT [Prolongation of the QT interval] // RMJ. Kardiologiya. 2001; 18: 750.
26. Lau S. T., Yu W. C., Mok N. S. et all. Tachycardia amongst subjects recovering from severe acute respiratory syndrome (SARS) // Int J Cardiol. 2005; 100: 167-169.
27. Nedogoda S. V. Fiksirovannaya kombinatsiya bisoprolola i amlodipina: novyye vozmozhnosti antigipertenzivnoy terapii [Fixed combination of bisoprolol and amlodipine: new possibilities of antihypertensive therapy] // Farmateka. 2013; 6 (259): 90-97.
28. Gao P., Wu W., Tian R. et al. Association between tachyarrhythmia and mortality in a cohort of critically ill patients with coronavirus disease 2019 (COVID-19) // Ann Transl Med. 2021; 9(10): 883.
29. Golgsmith S. R. Effect of amlodipine and felodipine on sympathetic activity and baroreflex function in normal humans // Am J Hypertens 1995; 8 (9): 902-908.
30. Peng C., Wang H., Guo Y.F. et al. Calcium channel blockers improve prognosis of patients with coronavirus disease 2019 and hypertension // Chin Med J (Engl). 2021; Jun 16; 134(13): 1602-1609.
31. Novikova L. B., Akopyan A. P., Sharapova K. M. i soavt. Nevrologicheskiye i psikhicheskiye rasstroystva, assotsiirovannyye s COVID-19 [Neurological and mental disorders associated with COVID-19] // Arterial'naya gipertenziya. 2020; 26 (3): 317-326.
32. Zapesochnaya I. L., Avtandilov A. G. Dinamika pokazateley tserebral'nogo krovotoka pri kombinirovannoy terapii amlodipinom i bisoprololom [Dynamics of cerebral blood flow indicators in combination therapy with amlodipine and bisoprolol] // Klinicheskaya meditsina. 2016; 94 (9): 908-914.
Review
For citations:
Melnikova L.V., Lokhina T.V., Berenshtein N.V., Ivanchukova M.G. Cardiovascular consequences of COVID-19: pathogenesis, diagnosis and treatment. Lechaschi Vrach. 2021;(7):8-13. (In Russ.) https://doi.org/10.51793/OS.2021.24.7.002
JATS XML


















