Preview

Лечащий Врач

Расширенный поиск

Микробиота кишечника — новый фактор риска сердечно-сосудистых и цереброваскулярных заболеваний

Полный текст:

Аннотация

Проведен анализ литературных данных о связи нарушений микробиоценоза кишечника с развитием сердечно-сосудистых и цереброваскулярных заболеваний. Показано, что микробиота желудочно-кишечного тракта, на которую влияют и генетические факторы, и факторы окружающей среды, является новой областью исследований, которая может быть потенциальной мишенью для терапевтического воздействия с целью снижения риска сердечно-сосудистых и цереброваскулярных заболеваний.

Об авторах

Г. И. Нечаева
ФГБОУ ВО ОмГМУ МЗ РФ
Россия


Е. А. Лялюкова
ФГБОУ ВО ОмГМУ МЗ РФ
Россия


Список литературы

1. Collado M. C., Rautava S., Aakko J., Isolauri I., Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid // Sci. Rep. 2016. 6: 23129.

2. Nagpal R., Tsuji H., Takahashi T., Kawashima K., Nagata S., Nomoto K., Yamashiro Y. Sensitive quantitative analysis of the meconium bacterial microbiota in healthy term infants born vaginally or by cesarean section // Front. Microbiol. 2016. 7: 2997.

3. B?ckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., Li Y. et al. Dynamics and stabilization of the human gut microbiome during the first year of life // Cell Host Microbe. 2015. 17: 690–703.

4. Adlerberth I., Wold A. E. Establishment of the gut microbiota in Western infants // Acta Paediatr. 2009. 98: 229.

5. Reinhardt C., Reigstad C. S., B?ckhed F. Intestinal microbiota during infancy and its implications for obesity // J. Pediatr. Gastroenterol. Nutr. 2009. 48: 249–256.

6. Bokulich N. A., Chung J., Battaglia T., Henderson N., Jay M., Li H., Lieber A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life // Sci. Transl. Med. 2016. 8: 343ra82.

7. Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O. Development of the human infant intestinal microbiota // PLoS Biol. 2007. 5: e177.

8. B?ckhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I. Host-bacterial mutualism in the human intestine // Science. 2005. 307: 1915–1920.

9. Cani P. D., Bibiloni R., Knauf C., Waget A., Neyrinck A. M., Delzenne N. M., Burcelin R. Changes in gut microbiota control metabolic endotoxemia?induced inflammation in high?fat diet?induced obesity and diabetes in mice // Diabetes. 2008. 57: 1470–1481.

10. Reinhardt C., Bergentall M., Greiner T. U., Schaffner F., ?stergren-Lund?n G., Petersen L. C., Ruf W. et al. Tissue factor and PAR1 promote microbiota?induced intestinal vascular remodeling // Nature. 2012. 483: 627–631.

11. Schroeder B. O., B?ckhed F. Signals from the gut microbiota to distant organs in physiology and disease // Nat. Med. 2016. 22: 1079–1089.

12. Zhu W., Gregory J. C., Org E., Buffa J. A., Gupta N., Wang Z., Li L. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk // Cell. 2016. 165: 111–124.

13. Rosenfeld M. E., Campbell L. A. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis // Thromb. Haemost. 2011. 106: 858–867.

14. Wang Z., Klipfell E., Bennett B. J., Koeth R., Levison B. S., Dugar B., Feldstein A. E. et al. Gut flora metabolsim of phosphatidylcholine promotes cardiovascular disease // Nature. 2011. 472: 57–63.

15. Ascher S., Reinhardt C. The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease [Review Clinical] // Eur. J. Immunol. 2018, vol. 48, p. 564.

16. Tolhurst G., Heffron H., Lam Y. S., Parker H. E., Habib A. M., Diakogiannaki E., Cameron J., Grosse J., Reimann F., Gribble F. M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2 // Diabetes. 2012. 61: 364–371.

17. Wang Z., Klipfell E., Bennett B. J., Koeth R., Levison B. S., Dugar B., Feldstein A. E. et al. Gut flora metabolsim of phosphatidylcholine promotes cardiovascular disease // Nature. 2011. 472: 57–63.

18. Freeland K. R., Wolever T. M. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha // Br. J. Nutr. 2010. 103: 460–466.

19. Collins H. L., Drazul-Schrader D., Sulpizio A. C., Koster P. D., Williamson Y., Adelman S. J., Owen K. et al. L–Carnitine intake and high trimethylamine N?oxide plasma levels correlate with low aortic lesions in ApoE(–/-) transgenic mice expressing CETP // Atherosclerosis. 2016. 244: 29–37.

20. Mueller D. M., Allenspach M., Othman A., Saely C. H., Muendlein A., Vonbank A., Drexel H. et al. Plasma levels of trimethylamine?N?oxide are confounded by impaired kidney function and poor metabolic control // Atherosclerosis. 2015. 243: 638–644.

21. Benakis C., Brea D., Caballero S., Faraco G., Moore J., Murphy M., Sita G. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal ?? T cells // Nat. Med. 2016. 22: 516–523.

22. Matsumoto T., Emoto T. et al. Oral administration of lactic acid bacterium Pediococcus acidilactici attenuates atherosclerosis in mice by inducing tolerogenic dendritic cells // Heart Vessels. 2017. 32: 768–776.

23. Li J., Lin S., Vanhoutte P. M., Woo C. W., Xu A. Akkermansia Muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced infammation in Apoe-/mice // Circulation. 2016. 133: 2434–2446.

24. Andraws R., Berger J. S., Brown D. L. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials // JAMA. 2005. 239: 2641–2647.

25. Ridker P. M., Everett B. M., Thuren T., MacFadyen J. G., Chang W. H., Ballantyne C., Fonseca F. et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease // N. Engl. J. Med. 2017. 377: 1119–1131.

26. Gregory J. C., Buffa J. A., Org E., Wang Z., Levison B. S., Zhu W., Wagner M. A. et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation // J. Biol. Chem. 2015. 290: 5647–5660.

27. Hirosuke Sugahara. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community // Scientific Reports. 2015. Vol. 5, Article № 13548.

28. Akatsu H., Iwabuchi N., Xiao J. Z., Matsuyama Z., Kurihara R., Okuda K., Yamamoto T., Maruyama M. Clinical Effects of Probiotic Bifidobacterium longum BB536 on Immune Function and Intestinal Microbiota in Elderly Patients Receiving Enteral Tube Feeding // JPEN J Parenter Enteral Nutr. 2012. 11: 27.


Рецензия

Для цитирования:


Нечаева Г.И., Лялюкова Е.А. Микробиота кишечника — новый фактор риска сердечно-сосудистых и цереброваскулярных заболеваний. Лечащий Врач. 2019;(2):50.

For citation:


Nechaeva G.I., Lyаlukova E.A. Intestinal microbiota as a new risk factor for cardiovascular and cerebrovascular diseases. Lechaschi Vrach. 2019;(2):50. (In Russ.)

Просмотров: 22


Creative Commons License
Контент доступен под лицензией Attribution-NonCommercial-NoDerivatives 4.0 International.


ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)