Actual issues of the pathogenesis of COVID-19 and possible measures for the prevention of severe forms of the disease
https://doi.org/10.26295/OS.2020.77.18.013
Abstract
The enormous impact of SARS-CoV-2 infection and the insufficiency or lack of established and evidence-based therapeutic measures give rise to fundamental and clinical studies to examine the mechanisms of penetration of the virus into the human body and its subsequent effects on the body. The uniqueness of the pathogenesis of the infection caused by SARS-CoV-2 is primarily due the virus tropism to the receptors angiotensin-converting enzyme type 2 (ACE2), which are on the surface of various cells: pneumocytes, epithelials of the esophagus and intestines, cardiomyocytes, endotheal capillaries, urinary and nervous system, as well as in other organs. It is assumed that the suppression of ACE2, induced by penetration of SARS-CoV-2 into cells, may be particularly harmful for subjects with pre-existing ACE2 deficiency. These considerations provide justification for the study of the role of therapeutic approaches conceptually associated with the activity of the ACE2 receptor.
About the Authors
Kh. G. OmarovaРоссия
PhD in Medicine,
Moscow
V. V. Makashova
Россия
Doctor of Medicine, Professor,
Moscow
Zh. B. Ponezheva
Россия
Doctor of Medicine,
Moscow
D. V. Usenko
Россия
Doctor of Medicine,
Moscow
A. V. Gorelov
Россия
Doctor of Medicine, Professor, Corresponding Member of RAS,
Moscow
V. I. Pokrovsky
Россия
Doctor of Medicine, Professor, Academician of RAS,
Moscow
References
1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor // Cell. 2020; 181 (2): 271–280. DOI: 10.1016/j.cell.2020.02.052.
2. Walls A. C., Park Y. J., Tortorici M. A., Wall A., McGuire A. T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein // Cell. 2020. DOI: 10.1016/j.cell.2020.02.058.
3. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K., Greenough T. C., Choe H., Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus // Nature. 2003; 426: 450–454.
4. Kabbani N., Olds J. L. Does COVID19 infect the brain? If so, smokers might be at a higher risk (англ.) // Molecular Pharmacology (англ.). 2020; 97 (5): 351—353. DOI: 10.1124/molpharm.120.000014. PMID 32238438.
5. Baig A. M. Neurological manifestations in COVID-19 caused by SARS-CoV-2 // CNS Neurosci Ther. 2020; 26 (5): 499–501. DOI: 10.1111/cns.13372.
6. Mao L., Wang M., Chen S., He Q., Chang J., Hong C., Zhou Y., Wang D., Li Y., Jin H., and Hu B. Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China: a retrospective case series study // medRxiv, 2020. 02.22.2002650010.1101/2020.02.22.20026500 (accessed on 2020-02-28).
7. Glowacka I., Bertram S., Muller M. A., Allen P., Soilleux E., Pfefferle S., Steffen I., Tsegaye T. S., He Y., Gnirss K., Niemeyer D., Schneider H., Drosten C., Pohlmann S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response // J Virol. 2011; 85: 4122–4134.
8. Barkauskas C. E., Cronce M. J., Rackley C. R., Bowie E. J., Keene D. R., Stripp B. R., Randell S. H., Noble P. W., Hogan B. L. Type 2 alveolar cells are stem cells in adult lung // J Clin Invest. 2013; 123: 3025–3036.
9. Hamming I., Timens W., Bulthuis M. L., Lely A. T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis // J Pathol. 2004; 203: 631–637.
10. Rivellese F., Prediletto E. ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia // Autoimmun Rev. 2020. DOI: 10.1016/j.autrev.2020.102536:102536.
11. Muus C. et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells // bioRxiv. 2020; april 20. DOI: 10.1101/2020.04.19.049254.
12. Ziegler C. G. K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues // Cell. 2020. DOI: 10.1016/j.cell.2020.04.035.
13. Lakatta E. G., Levy D. Arterial and Cardiac Aging: Major Shareholders in Cardiovascular Disease Enterprises: Part II: The Aging Heart in Health: Links to Heart Disease // Circulation. 2003; 107 (2): 346–354. DOI: 10.1161/01.CIR.0000048893.62841.F7.
14. Kuba K., Imai Y., Penninger J. M. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases // Circ J. 2013; 77: 301–308.
15. Patel V. B., Zhong J. C., Grant M. B., Oudit G. Y. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure // Circ Res. 2016; 118: 1313–1326.
16. Turner A. J., Hiscox J. A., Hooper N. M. ACE2: from vasopeptidase to SARS virus receptor // Trends Pharmacol Sci. 2004; 25: 291–294.
17. Zhang H., Penninger J. M., Li Y., Zhong N., Slutsky A. S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target // Intensive Care Med. 2020. DOI: 10.1007/s00134-020-05985-9.
18. Bernstein K. E., Khan Z., Giani J. F., Cao D. Y., Bernstein E. A., Shen X. Z. Angiotensin-converting enzyme in innate and adaptive immunity // Nat Rev Nephrol. 2018; 14: 325–336.
19. Recinos A., LeJeune W. S., Sun H., Lee C. Y., Tieu B. C., Lu M., Hou T., Boldogh I., Tilton R. G., Brasier A. R. Angiotensin II induces IL-6 expression and the Jak-STAT3 pathway in aortic adventitia of LDL receptor-deficient mice // Atherosclerosis. 2007; 194: 125–133.
20. Yamamoto S., Yancey P. G., Zuo Y., Ma L. J., Kaseda R., Fogo A. B., Ichikawa I., Linton M. F., Fazio S., Kon V. Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis // Arterioscler Thromb Vasc Biol. 2011; 31: 2856–2864.
Review
For citations:
Omarova Kh.G., Makashova V.V., Ponezheva Zh.B., Usenko D.V., Gorelov A.V., Pokrovsky V.I. Actual issues of the pathogenesis of COVID-19 and possible measures for the prevention of severe forms of the disease. Lechaschi Vrach. 2020;(8):77-82. (In Russ.) https://doi.org/10.26295/OS.2020.77.18.013
JATS XML


















