Preview

Lechaschi Vrach

Advanced search

The role of gut microbiota, short-chain fatty acids, and bile acids in the development of gallstone disease

https://doi.org/10.51793/OS.2025.28.8.003

Abstract

Background. Gallstone disease remains one of the most common pathologies of the hepatobiliary system.

Objective. The purpose of this review is to systematize current data on the pathogenesis of gallstone disease, the role of bile acids and short-chain fatty acids, and gut microbiota in the development of systemic inflammation leading to the formation of cholesterol gallstones.

Results. The pathogenesis of cholesterol gallstone formation involves several factors, the most significant of which include genetic predisposition, imbalance between bile components (such as cholesterol, bile acids, and phospholipids), motility disorders of the biliary tract, and systemic inflammation. Bile acids play a key role in stabilizing the physicochemical and colloidal properties of bile. Disruptions in gut microbiota lead to insufficient production of hydrophilic ursodeoxycholic acid and increased absorption of toxic primary bile acids. In contrast, ursodeoxycholic acid exhibits a wide range of pleiotropic effects, including modulation of the bile acid pool, acting as a cytoprotective, immunomodulatory, and choleretic agent. The gallbladder microbiota closely interacts with the gut microbiota. Shortchain fatty acids, produced by gut microbiota, inhibit pathogenic bacteria, stimulate the immune system to mount a specific response, and mitigate inflammatory reactions. They serve as universal "signaling" molecules involved in intra- and intercellular communication. One mechanism involves interaction with nuclear acetyl-CoA, regulating the expression of genes responsible for pro-inflammatory cytokine production. Due to their small size, short-chain fatty acids passively diffuse through cell membranes or are actively transported via sodium-coupled transporters, entering the cytoplasm and even the nucleus of eukaryotic cells. There, they inhibit histone deacetylase activity, regulating acetylation and thus epigenetically dependent gene expression related to cell proliferation, differentiation, epithelial integrity, and immune response.

Conclusion. Short-chain fatty acids and bile acids are key molecules in regulating the "gut-liver-gallbladder" axis, which may be crucial for developing new therapeutic approaches for biliary tract diseases.

About the Authors

E. A. Ljaljukova
Omsk State Medical University
Россия

Elena A. Ljaljukova, Dr. of Sci. (Med.), Professor of the Department of Internal Medicine and Family Medicine of the Faculty of Additional Professional Education

5 Petr Nekrasov str., Omsk, 644037



T. N. Makarov
Maikop State Technological University, Medical Institute Maikop
Россия

Timur N. Makarov, PhD student of the Department of Hospital Therapy and Postgraduate Education

177 Pushkina str., Maikop, 385000



A. V. Ljaljukov
Maikop State Technological University, Medical Institute Maikop
Россия

Aleksandr V. Lyalyukov, PhD student of the Department of Hospital Therapy and Postgraduate Education

177 Pushkina str., Maikop, 385000



N. S. Cheuzheva
Adygea Republican Clinical Hospital
Россия

Natella S. Cheuzheva, Chief Physician

4 Zhukovskogo str., Maikop, 385000



References

1. Recommendations of the Russian Gastroenterological Association for the diagnosis and treatment of gallstone disease. 2016; 26 (3): 64-80. DOI: 10.22416/1382-4376-2016-26-3-64-80.7. (In Russ.)

2. Jones M. W., Weir C. B., Ghassemzadeh S. Gallstones (Cholelithiasis) [Updated 2024 Aug 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459370/.

3. Shaffer E. A. Epidemiology and risk factors for gallstone disease: has the paradigm changed in the 21st century? Curr Gastroenterol Rep. 2005; 7 (2): 132-140. DOI: 10.1007/s11894-005-0051-8. PMID: 15802102.

4. Di Ciaula A., Portincasa P. Recent advances in understanding and managing cholesterol gallstones. F1000Res. 2018; 7: F1000. Faculty Rev-1529. DOI: 10.12688/f1000research.15505.1. PMID: 30345010; PMCID: PMC6173119.

5. Portincasa P., Moschetta A., Palasciano G. Cholesterol gallstone disease. Lancet. 2006; 368 (9531): 230-239. DOI: 10.1016/S0140-6736(06)69044-2. PMID: 16844493.

6. Hartwig W., Büchler M. W. Acute cholecystitis: early versus delayed surgery. Adv Surg. 2014; 48: 155-164. DOI: 10.1016/j.yasu.2014.05.008. PMID: 25293613.15.

7. Hall L., Halle-Smith J., Evans R., Toogood G., Wiggins T., Markar S. R., Kapoulas S., Super P., Tucker O., McKay S. C. Ursodeoxycholic acid in the management of symptomatic gallstone disease: systematic review and clinician survey. BJS Open. 2023; 7 (2): zrac152. DOI: 10.1093/bjsopen/zrac152. PMID: 36952251; PMCID: PMC10035564.

8. Costa C. J., Nguyen M. T. T., Vaziri H., Wu G. Y. Genetics of Gallstone Disease and Their Clinical Significance: A Narrative Review. J Clin Transl Hepatol. 2024; 12 (3): 316-326. DOI: 10.14218/JCTH.2023.00563. Epub 2024 Feb 8. PMID: 38426197; PMCID: PMC10899874.

9. Sun H., Warren J., Yip J., Ji Y., Hao S., Han W., Ding Y. Factors Influencing Gallstone Formation: A Review of the Literature. Biomolecules. 2022; 12 (4): 550. DOI: 10.3390/biom12040550. PMID: 35454138; PMCID: PMC9026518.

10. Méndez-Sánchez N., Chavez-Tapia N. C., Motola-Kuba D., Sanchez-Lara K., Ponciano-Rodríguez G., Baptista H., Ramos M. H., Uribe M. Metabolic syndrome as a risk factor for gallstone disease. World J Gastroenterol. 2005; 11 (11): 16531657. DOI: 10.3748/wjg.v11.i11.1653. PMID: 15786544; PMCID: PMC4305948.

11. Dan W. Y., Yang Y. S., Peng L. H., Sun G., Wang Z. K. Gastrointestinal microbiome and cholelithiasis: Current status and perspectives. World J Gastroenterol. 2023; 29 (10): 1589-1601. DOI: 10.3748/wjg.v29.i10.1589. PMID: 36970590; PMCID: PMC10037248.

12. Ye X., Huang D., Dong Z., Wang X., Ning M., Xia J., Shen S., Wu S., Shi Y., Wang J., Wan X. FXR Signaling-Mediated Bile Acid Metabolism Is Critical for Alleviation of Cholesterol Gallstones by Lactobacillus Strains. MicrobiolSpectr. 2022; 10: e00518-22.https://doi.org/10.1128/spectrum.00518-22.

13. Liu P., Liu Z., Wang J., et al. Immunoregulatory role of the gut microbiota in inflammatory depression. Nat Commun. 2024; 15: 3003. https://doi.org/10.1038/s41467-024-47273-w.

14. Wan H., et al. Comparisons of protective effects between two sea cucumber hydrolysates against diet induced hyperuricemia and renal inflammation in mice. Food Funct. 2020; 11: 1074-1086.

15. Jhang J. J., Lin J. H.. Yen G. C. Beneficial Properties of Phytochemicals on NLRP3 Inflammasome-Mediated Gout and Complication. J. Agric. Food Chem. 2018; 66: 765-772.

16. Pellegrini C., et al. Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications. Prog. Neurobiol. 2020; 91: 101806.

17. Quévrain E., et al. Identification of an anti-inflammatory protein from Faecalibacteriumprausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. 2016; 65: 415-425.

18. Liu R. T., et al. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. BrainBehav. Immun. 2020; 88: 308-324.

19. Butyric acid and inulin in clinical practice: theoretical aspects and possibilities for clinical application. Ardatskaya, M. D.; edited by M. D. Ardatskaya. Moscow: Prima Print, 2016. 72 p.: ill. Author is indicated on the back cover. ISBN 978-5-9907558-2-6. (In Russ.)

20. Li M., et al. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 2018; 831: 52-59.

21. Ye X., Shen S., Xu Z., Zhuang Q., Xu J., Wang J., Dong Z., Wan X. Sodium butyrate alleviates cholesterol gallstones by regulating bile acid metabolism. Eur J Pharmacol. 2021 Oct 5;908:174341. doi: 10.1016/j.ejphar.2021.174341. Epub 2021 Jul 14. PMID: 34273384.

22. Ilchenko A. A. Bile acids in normal and pathological conditions. EikG. 2010. No. 4. URL: https://cyberleninka.ru/article/n/zhelchnye-kisloty-vnorme-i-pri-patologii (accessed: 05.06.2025). (In Russ.)

23. Kucheryavy Yu. A., Cheremushkin S. V. Assessment of the therapeutic efficacy of the reference drug ursodeoxycholic acid and its analogues in dissolving biliary sludge: a meta-analysis. Consilium Medicum. 2022; 24 (12): 860-864. DOI: 10.26442/20751753.2022.12.201429 (In Russ.)

24. Chassaing B., Raja S. M., Lewis J. D., Srinivasan S., Gewirtz A. T. Colonic Microbiota Encroachment Correlates With Dysglycemia in Humans. Cell Mol Gastroenterol Hepatol. 2017; 4 (2): 205-222.


Review

For citations:


Ljaljukova E.A., Makarov T.N., Ljaljukov A.V., Cheuzheva N.S. The role of gut microbiota, short-chain fatty acids, and bile acids in the development of gallstone disease. Lechaschi Vrach. 2025;1(7-8):22-27. (In Russ.) https://doi.org/10.51793/OS.2025.28.8.003

Views: 63

JATS XML

ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)