Diabetic polyneuropathy: what's new?
https://doi.org/10.51793/OS.2025.28.3.002
Abstract
Objective. The article discusses one of the most common neurological complications of type 2 diabetes mellitus – diabetic polyneuropathy, which is present in every third patient with type 2 diabetes mellitus and is the most common cause of non-traumatic amputation of the lower extremities in most high-income countries.
Results. The available modern data on the pathogenesis, the latest methods of diagnosis and prognosis of diabetic polyneuropathy are summarized. The stages of the symptoms of diabetic polyneuropathy are explained based on modern concepts of the initial lesion of unmyelinated fibers and the further involvement of thicker and well-protected myelinated fibers in the pathological process. Special attention is paid to the indicators available for determination in routine clinical practice and well-known to clinicians: homocysteine, leptin, routine cardiovascular markers, albumin/creatinine ratio, etc. Along with them, progressive biochemical and molecular genetic markers of diabetic polyneuropathy are mentioned, which have the greatest chance of entering clinical work in the near future, such as endocan, the study of the MAPK14 gene. The risk factors for the development of diabetic polyneuropathy in the course of drug and non-drug treatment of type 2 diabetes mellitus and ways to correct them are discussed. Among such factors is a possible deficiency of cyanocobalamin while taking biguanides, thiamine and pyridoxine on the background of restrictive diets. The necessity of their additional subsidies for diabetic polyneuropathy is substantiated. The article presents a modern strategy for pathogenetically based therapy of diabetic polyneuropathy, its place in clinical practice and the expected benefits of its use, not only in the context of replenishing the pool of B vitamins, but also the use of alpha-lipoic acid with antioxidant activity. The trend of recent years is the study of predictors of response to alpha-lipoic acid treatment. Attention is paid to the peculiarities of the pathomorphosis of diabetic polyneuropathy in the context of the new reality created by the COVID-19 pandemic.
About the Authors
E. G. DemianovskayaРоссия
Ekaterina G. Demianovskaya, Cand. of Sci. (Med.), Neurologist; Associate Professor of the Department of Neurology
63, building 2 Volokolamskoe Shosse, Moscow, 125310
19, building 1A Marshala Timoshenko str., Moscow, 121359
A. S. Vasilev
Россия
Aleksei S. Vasilev, Cand. of Sci. (Med.), Head of the Academic Department, Associate Professor of the Department of Neurology
19, building 1A Marshala Timoshenko str., Moscow, 121359
V. I. Shmyrev
Россия
Vladimir I. Shmyrev, Dr. of Sci. (Med.), Professor, Head of the Department of Neurology
19, building 1A Marshala Timoshenko str., Moscow, 121359
References
1. Hanewinckel R., van Oijen M., Ikram M. A., van Doorn P. A. The epidemiology and risk factors of chronic polyneuropathy. Eur J Epidemiol. 2016; 31 (1): 5-20.
2. American Diabetes Association Professional Practice Committee. 12 Retinopathy, neuropathy, and foot care: standards of care in diabetes-2024. Diabetes Care. 2024; 47 (Suppl 1): S231-S243.
3. Biryukova E. V., Gannenkova E. S., Solovieva I. V. Diabetic polyneuropathy: what have we achieved in understanding the problem? RMJ. 2020; 1: 14-19. (In Russ.)
4. Boulton A. J. M., Armstrong D. G., Kirsner R. S., Attinger C. E., Lavery L. A., Lipsky B. A., et al. Diagnosis and management of diabetic foot complications. Compendia. 2018; 2018 (2).
5. Selvarajah D., Kar D., Khunti K., Davies M. J., Scott AR., Walker J., et al. Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol. 2019; 7: 938-948.
6. Elafros M. A., Andersen H., Bennett D. L., Savelieff M. G., Viswanathan V., Callaghan B. C., et al. Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments. Lancet Neurology. 2022; 21 (10): 922-936.
7. Du W., Wang N., Li F., Jia K., An J., Liu Y., et al. STAT3 phosphorylation mediates high glucose-impaired cell autophagy in an HDAC1-dependent and -independent manner in Schwann cells of diabetic peripheral neuropathy. FASEB J. 2019; 33 (7): 8008-8021.
8. Liu Y. P., Shao S. J., Guo H. D. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy. Life Sci. 2020; 248: 117459.
9. Cernea S., Raz I. Management of diabetic neuropathy. Metabolism: Clin Experimental. 2021; 123: 154867.
10. Sima A. A., Kamiya H. Diabetic neuropathy differs in type 1 and type 2 diabetes. Ann New York Acad Sci. 2006; 1084: 235-249.
11. Hur J., O’Brien P. D., Nair V., Hinder L. M., McGregor B. A., Jagadish H. V., et al. Transcriptional networks of murine diabetic peripheral neuropathy and nephropathy: common and distinct gene expression patterns. Diabetologia. 2016; 59 (6): 1297-1306.
12. Gu Y., Qiu Z. L., Liu D. Z., Sun G. L., Guan Y. C., Hei Z. Q., et al. Differential gene expression profiling of the sciatic nerve in type 1 and type 2 diabetic mice. Biomed Rep. 2018; 9 (4): 291-304.
13. Lachin J. M., Bebu I., Bergenstal R. M., et al. Association of Glycemic Variability in Type 1 Diabetes With Progression of Microvascular Outcomes in the Diabetes Control and Complications Trial. Diabetes Care. 2017; 40 (6): 777-783.
14. Kirthi V., Perumbalath A., Brown E., et al. Prevalence of peripheral neuropathy in pre-diabetes: a systematic review. BMJ Open Diabetes Res Care. 2021; 9 (1).
15. Callaghan B. C., Little A. A., Feldman E. L., Hughes R. A. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012; 6: CD007543.
16. Lv N., Jia L., Liu F., Cheng L., Liu F., Kuang J., Chen X. Elevated circulating homocysteine concentrations delayed nerve conduction velocity and increase the risk of diabetic kidney disease in patients with type 2 diabetes. Front Endocrinol (Lausanne). 2024; 15: 1451758.
17. Peng H. Y., Man C. F., Xu J., Fan Y. Elevated homocysteine levels and risk of cardiovascular and all-cause mortality; a meta-analysis of prospective studies. J. Zhejiang Univ. Sci. B. 2015; 16 (1): 78-86.
18. Li M., Wu K., Chang J., Jiang W. C. A retrospective study on the time in range of blood glucose and type 2 diabetic peripheral neuropathy. BioMed Res Int. 2022; 2022: 2743679.
19. Clemente-Suárez V. J., Redondo-Flórez L., Beltrán-Velasco A. I., Martín-Rodríguez A., Martínez-Guardado I., Navarro-Jiménez E., LabordeCárdenas C. C., Tornero-Aguilera J. F. The Role of Adipokines in Health and Disease. Biomedicines. 2023; 11 (5): 1290.
20. Bolotova N. V., Kurdiyan M. S., Filina N. Y. Neuroendocrine mechanisms of regulation of eating behavior (review). Saratovskii nauchno-meditsinskii Zhurnal. 2020; 16 (3): 707-713. (In Russ.)
21. Chen Z., Fu S., Lai S., Fu M., Du G. Association of circulating adiponectin and leptin levels with the risk of diabetic peripheral neuropathy. Front Endocrinol (Lausanne). 2024; 15: 1505082.
22. Christensen D. H., Knudsen S. T., Gylfadottir S. S., et al. Metabolic Factors, Lifestyle Habits, and Possible Polyneuropathy in Early Type 2 Diabetes: A Nationwide Study of 5,249 Patients in the Danish Centre for Strategic Research in Type 2 Diabetes (DD2) Cohort. Diabetes Care. 2020; 43 (6): 1266-1275.
23. Andersen S. T., Witte D. R., Dalsgaard E. M., et al. Risk Factors for Incident Diabetic Polyneuropathy in a Cohort With Screen-Detected Type 2 Diabetes Followed for 13 Years: ADDITION-Denmark. Diabetes Care. 2018; 41 (5): 1068-1075.
24. Type 2 diabetes mellitus in adults. Clinical Recommendations of the Ministry of Health of the Russian Federation, 2022. (In Russ.)
25. Zhang H., Yang S., Wang H., Fareeduddin Mohammmed Farooqui H., Zhu W., Niu T., Zhang Z., Chen Y., Huang L., Zhang Y., He M., Song B., Feng S., Zhang H. Assessing the diagnostic utility of urinary albumin-to-creatinine ratio as a potential biomarker for diabetic peripheral neuropathy in type 2 diabetes mellitus patients. Sci Rep. 2024; 14 (1): 27198.
26. Zhang J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev Cardiovasc Med. 2022; 23 (2): 73.
27. Alieva A. M. Reznik E. V., Baikova I. E., Teplova N. V., Makeeva L. M., Voronkova K. V., Khadzhieva N. H., Modestova A. V., Totolyan G. G., Valiev R. V. V., Totolyan G. G., Valiev R. K., Lee A. M. K., Li A. M., Kotikova I. A., Nikitin I. G. Endocan – a key player in cardiovascular pathology. Consilium Medicum. 2023; 25 (1): 20-28. (In Russ.)
28. Jena P. P., Nanda R., Ghosh A., Patel S., Shah S., Mohapatra E. Endocan expression and correlation with other endothelial determinants in developing a score for early identification of diabetic peripheral neuropathy. Sci Rep. 2025; 15 (1): 850.
29. Ustinova M., Peculis R., Rescenko R., Rovite V., Zaharenko L., Elbere I., Silamikele L., Konrade I., Sokolovska J., Pirags V., Klovins J. Novel susceptibility loci identified in a genome-wide association study of type 2 diabetes complications in population of Latvia. BMC Med Genomics. 2021; 14 (1): 18.
30. Berger S. L., Kouzarides T., Shiekhattar R., Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009; 23: 781-783.
31. Gao T., Luo J., Fan J., Gong G., Yang H. Epigenetic modifications associated to diabetic peripheral neuropathic pain (Review). Mol Med Rep. 2025; 31 (1): 28.
32. Berchtold P., Bolli P., Arbenz U., Keiser G. Disturbance of intestinal absorption following metformin therapy observations on the mode of action of biguanides. Diabetologia. 1969; 5 (6): 405-412.
33. Miller J. W. Proton Pump Inhibitors, H2-Receptor Antagonists, Metformin, and Vitamin B-12 Deficiency: Clinical Implications. Adv Nutr. 2018; 9 (4): 511S-518S.
34. The Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD), Aas A.-M., Axelsen M., et al. Evidencebased European recommendations for the dietary management of diabetes. Diabetologia. 2023; 66 (6): 965-985.
35. Malik N., Tonstad S., Paalani M., Dos Santos H., Luiz Do Prado W. Are longterm FAD diets restricting micronutrient intake? A randomized controlled trial. Food Sci Nutr. 2020; 8 (11): 6047-6060.
36. Hoyt C. S., Billson F. A. Optic neuropathy in ketogenic diet. Br J Ophthalmol. 1979; 63 (3): 191-194.
37. Pacei F., Tesone A., Laudi N., et al. The relevance of thiamine evaluation in a practical setting. Nutrients. 2020; 12 (9): 2810.
38. Vinik A. I. Diabetic neuropathy: pathogenesis and therapy. Am. J. Med. 1999; 107: 17-26.
39. Michalak S., Michałowska-Wender G., Adamcewicz G., Wender M. B. Erythrocyte transketolase activity in patients with diabetic and alcoholic neuropathies. Folia Neuropathol. 2013; 51 (3): 222-226.
40. Wu H. H. L., McDonnell T., Chinnadurai R. Physiological Associations between Vitamin B Deficiency and Diabetic Kidney Disease. Biomedicines. 2023; 11 (4): 1153.
41. Spasov A. A., Solovieva O. A., Kuznetsova V. A. Protein glycation in diabetes mellitus and possibilities of its pharmacologic correction (review). Khimikofarmatsevticheskii zhurnal. 2017. 51 (6): 3-7. (In Russ.)
42. Mascolo E., Vernì F. Vitamin B6 and Diabetes: Relationship and Molecular Mechanisms. Int J Mol Sci. 2020; 21 (10): 3669.
43. Beltramo E., Mazzeo A., Porta M. Thiamine and diabetes: back to the future? Acta Diabetol. 2021; 58 (11): 1433-1439.
44. Dubinina I.I., Berstneva S. V., Baranov V. V., Azimkova L. V. Effectiveness of combined therapy of diabetic distal neuropathy in patients with type 2 diabetes mellitus. Sakharnyi diabet. 2016; 19 (4): 315-321. (In Russ.)
45. Vorobyeva O. V. Approaches to prevention and treatment of diabetic neuropathy. EF: nevrologiya i psihiatriya. 2012; 5: 42-48. (In Russ.)
46. Report on the results of an open, randomized study of comparative pharmacokinetics of Combilipen® tabs (Pharmstandard-UfaVITA JSC, Russia) and Neuromultivit® (Lannacher Heimittel GmbH, Austria), 2010. (In Russ.)
47. Instructions for medical use of the drug Combilipen®. LP-#=(007054)- (RG-RU) from 30.09.2024. (In Russ.)
48. Instruction for medical use of the preparation Combilipen® tabs. LP-#=(007182)-(RG-RU) from 10.10.2024. (In Russ.)
49. Tibullo D., Li Volti G., Giallongo C., Grasso S., Tomassoni D., Anfuso C. D., Lupo G., Amenta F., Avola R., Bramanti V. Biochemical and clinical relevance of alpha lipoic acid: Antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm. Res. 2017; 66: 947-959.
50. Maciejczyk M., Żebrowska E., Nesterowicz M., Żendzian-Piotrowska M., Zalewska A. α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of InsulinResistant Rats. Oxid. Med. Cell. Longev. 2022; 2022: 7450514.
51. Ziegler D. Pathogenetic treatments for diabetic peripheral neuropathy. Diabetes Res Clin Pract. 2023; 206 Suppl 1: 110764.
52. Instructions for medical use of the drug Octolipen®. LP-#=(006281)-(RG-RU) from 19.07.2024 (IN Russ.)
53. Instructions for medical use of the drug Octolipen®. LP-#=(006899)-(RG-RU) of 17.09.2024 (In Russ.)
54. Hernyák M., Tóth L. I., Csiha S., Molnár Á., Lőrincz H., Paragh G., Harangi M., Sztanek F. Kallistatin as a Potential Marker of Therapeutic Response During Alpha-Lipoic Acid Treatment in Diabetic Patients with Sensorimotor Polyneuropathy. Int J Mol Sci. 2024; 25 (24): 13276.
55. Lazutka JR., Daniūnaitė K., Dedonytė V., et al. Effects of Short-Term Treatment with α-Lipoic Acid on Neuropathic Pain and Biomarkers of DNA Damage in Patients with Diabetes Mellitus. Pharmaceuticals (Basel). 2024; 17 (11): 1538. Published 2024 Nov 16.
56. Didangelos T., Karlafti E., Kotzakioulafi E., Giannoulaki P., Kontoninas Z., Kontana A., Evripidou P., Savopoulos C., Birkenfeld A. L., Kantartzis K. Efficacy and Safety of the Combination of Palmitoylethanolamide, Superoxide Dismutase, Alpha Lipoic Acid, Vitamins B12, B1, B6, E, Mg, Zn and Nicotinamide for 6 Months in People with Diabetic Neuropathy. Nutrients. 2024; 16 (18): 3045.
57. Bereda G. COVID-19 is associated with high blood glucose levels: diabetic neuropathy during the SARS-CoV-2 pandemic: a case report. Ann Med Surg (Lond). 2024; 86 (12): 7318-7321.
58. Ser M. H., Çalıkuşu F. Z., Tanrıverdi U., et al. Autonomic and neuropathic complaints of long-COVID objectified: an investigation from electrophysiological perspective. Neurol Sci. 2022; 43 (11): 6167-6177.
59. Chen X., Jiang G., Zhao T., Sun N., Liu S., Guo H., Zeng C., Liu Y. Identification of potential drug targets for diabetic polyneuropathy through Mendelian randomization analysis. Cell Biosci. 2024; 14 (1): 147.
60. Zhu J., Hu Z., Luo Y., Liu Y., Luo W., Du X., Luo Z., Hu J., Peng S. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne). 2024; 14: 1265372.
61. Ramenskaya G. V., Petukhova O. A., Smirnov V. V. Clinical and pharmacological aspects of the use of vitamin B1 preparations with different solubility in fats and aqueous media. Neurologiya, neiropsokhiatriya, psikhosomatika. 2012; 4: 67-70. (In Russ.)
62. Kukes V. G. Clinical pharmacology: Moscow: GEOTAR MEDICINE, 1999. 528 p. (In Russ.)
63. Danilov A. B. Vitamins of group "B" in the treatment of pain. Manage pain. 2016; (10) 4: 56-59. (In Russ.)
64. Еckert M, Schejbal P. Therapie von Neuropathien mit einer Vitamin-BKombination. Symptomatische Behandlung von schmerzhaften Erkrankungen des peripheren Nervensystems mit einem Kombinationsprarat aus Thiamin, Pyridoxin und Cyanocobalamin [Therapy of neuropathies with a vitamin B combination. Symptomatic treatment of painful diseases of the peripheral nervous system with a combination preparation of thiamine, pyridoxine and cyanocobalami n]. Fortschr Med. 1992; 110 (29): 544-8. German. PMID: 1330858.
65. Ruessmann HJ; German Society of out patient diabetes centres AND (Arbeitsgemein schaft niedergelassen er diabetologisch tä tiger Arzte e. V.). Switching from pathogenetic treatment with alpha-lipoic acid to gabapentin and other analgesics in painful diabetic neuropathy: a real-world study in outpatients. J Diabetes Complications. 2009; 23 (3): 174-7.
Review
For citations:
Demianovskaya E.G., Vasilev A.S., Shmyrev V.I. Diabetic polyneuropathy: what's new? Lechaschi Vrach. 2025;(3):16-23. (In Russ.) https://doi.org/10.51793/OS.2025.28.3.002
JATS XML



















