Preview

Lechaschi Vrach

Advanced search

Osteoporosis in patients with non-alcoholic fatty liver disease: a review of the literature

https://doi.org/10.51793/OS.2025.28.1.006

Abstract

Background. Nonalcoholic fatty liver disease and osteoporosis are two common metabolic diseases. The prevalence of non-alcoholic fatty liver disease in populations is as high as 38%, with a much higher prevalence among obese and/or type 2 diabetics. The global prevalence of osteoporosis is estimated at 19.7%, varying considerably between countries and continents, and statistics show that the region and the level of solar activity do not determine the prevalence of the problem. Like non-alcoholic fatty liver disease, osteoporosis is latent for a long time, without a manifest clinical picture. It is quite logical to ask whether non-alcoholic fatty liver disease is an important component of the pathogenesis of osteoporosis or whether these are two frequently occurring diseases.

Objective. The objective of this literature review was to summarise the experimental and clinical evidence on the potential association between non-alcoholic fatty liver disease and osteoporosis.

Results. Non-alcoholic fatty liver disease as a manifestation of metabolic syndrome based on insulin resistance affects bone metabolism, increasing the risk of osteoporosis and its complications. Current literature suggests that non-alcoholic fatty liver disease affects bone metabolism in several ways: through alterations in systemic and local bone marrow immune status, modulating insulin-like growth factor-1 levels, gut microbiota composition, short-chain fatty acid metabolism and intestinal barrier integrity. Some studies have shown that bile acids produced by the liver have a protective effect on bone tissue. Bile acids are able to reprogram pro-inflammatory macrophages into their anti-inflammatory phenotypes, thereby reducing the degree of systemic inflammation. Normalising the interplay between the microbiome, immunity and bone metabolism may open new avenues for the treatment of osteoporosis in the future.

About the Authors

E. A. Ljaljukova
Omsk State Medical University; Maikop State Technological University, Medical Institute
Россия

Elena A. Ljaljukova - Dr. of Sci. (Med.), Professor of the Department of Internal Medicine and Family Medicine of the Faculty of Additional Professional Education, Federal State Budgetary Educational Institution of Higher Education Omsk State Medical University of the Ministry of Health of the Russian Federation; Head of the Department of Hospital Therapy and Postgraduate Education, Federal State Budgetary Educational Institution of Higher Education Maikop State Technological University, Medical Institute.

5 Petr Nekrasov str., Omsk, 644037; 177 Pushkina str., Maikop, 385000



E. N. Chernysheva
Astrakhan State Medical University
Россия

Elena N. Chernysheva - Dr. of Sci. (Med.), Associate Professor, Head of Cardiology Department, Federal State Budgetary Educational Institution of Higher Education Astrakhan State Medical University of the Ministry of Health of the Russian Federation.

121 Bakinskaya Str., Astrakhan, 414000



A. V. Lyalyukov
Maikop State Technological University, Medical Institute
Россия

Aleksandr V. Lyalyukov - PhD student of the Department of Hospital Therapy and Postgraduate Education, Federal State Budgetary Educational Institution of Higher Education Maikop State Technological University, Medical Institute.

177 Pushkina str., Maikop, 385000



References

1. Younossi Z. M., Golabi P., Paik J. M., Henry A., van Dongen C., Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023; 77 (4): 1335-1347. DOI: 10.1097/HEP.0000000000000004.

2. Belaya Zh. E., Belova K. Yu., Biryukova E. V., Dedov I. I., Dzeranova L. K., Drapkina O. M., Dreval A.V., Dubovitskaya T.A., Dudinskaya E. N., Ershova O. B., Zagorodniy N. V., Ilyukhina O. B., Kanis D. A., Kryukova I. V., Lesnyak O. M., Mamedova E. O., Marchenkova L. A., Melnichenko G. A., Nikankina L. V., Nikitinskaya O. A., Petryaikin A. V., Pigarova E. A., Rodionova S. S., Rozhinskaya L. Ya., Skripnikova I. A., Tarbaeva N. V., Tkacheva O. N., Toroptsova N. V., Farba L. Ya., Tsoriev T. T., Chernova T. O., Yureneva S.V., Yakushevskaya O. V. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporoz i osteopatii. 2021; 24 (2): 4-47. (In Russ.) https://doi.org/10.14341/osteo12930

3. Xiao P. L., Cui A. Y., Hsu C. J., Peng R., Jiang N., Xu X. H., et al. Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: A systematic review and meta-analysis. Osteoporosis Int. 2022; 33 (10): 2137-2153. DOI: 10.1007/s00198-022-06454-3.

4. Compston J. E., McClung M. R., Leslie W. D. Osteoporosis. Lancet. 2019; 393 (10169): 364-376. DOI: 10.1016/S0140-6736(18)32112-3.

5. Hassan A. M., Haridy M. A., Shoaeir M. Z., et al. Non-alcoholic fatty liver disease is associated with decreased bone mineral density in upper Egyptian patients. Sci Rep. 2023; 13, 4353. https://doi.org/10.1038/s41598-023-31256-w.

6. Musio Alessandra, Perazza F., Leoni L., Stefanini B., Dajti E., Menozzi R., Petroni M. L., Colecchia A., Ravaioli F. Osteosarcopenia in NAFLD/MAFLD: An Underappreciated Clinical Problem in Chronic Liver Disease, International Journal of Molecular Sciences. 2023; 24 (8): 7517. DOI:10.3390/ijms24087517.

7. Yang Y. J., Kim D. J. An overview of the molecular mechanisms contributing to musculoskeletal disorders in chronic liver disease: osteoporosis, sarcopenia, and osteoporotic sarcopenia. Int J Mol Sci. 2021; 22 (5): 2604. DOI: 10.3390/ijms22052604.

8. Tang M., Jiang Y., Jia H., Patpur B. K., Yang B., Li J., et al. Osteopontin acts as a negative regulator of autophagy accelerating lipid accumulation during the development of nonalcoholic fatty liver disease. Artif cells nanomedicine Biotechnol. 2020; 48 (1): 159-168. DOI: 10.1080/21691401.2019.1699822.

9. Klaan N. K., Pronina T. A., Akinshina L. P., Reshetnikova V. V. Nuclear factor kappa in (NF-kB) as a target for the action of natural antitumour compounds. Rossiiskii bioterapevticheskii zhurnal. 2014; 1 (13): 3-8. (In Russ.) URL: https://cyberleninka.ru/article/n/yadernyy-faktor-kappa-v-nf-kb-v-kachestve-misheni-dlya-deystviya-prirodnyh-protivoopuholevyh-soedineniy (Accessed: 05.09.2024)

10. Yaroslavtseva M. V., Ulyanova I. N., Galstyan G. R. Osteoprotegerin (OPG)-ligand receptor-activator of nuclear factor kappa-B (RANKL) system in diabetic neuroosteoarthropathy and obliterative atherosclerosis of lower limb arteries. Sakharnyi diabet. 2007; 10 (2): 24-27. (In Russ.) https://doi.org/10.14341/2072-0351-5792

11. Desentis-Desentis M. F., Rivas-Carrillo J. D., Sánchez-Enríquez S. Protective role of osteocalcin in diabetes pathogenesis. Journal of Bone and Mineral Metabolism. 2020; 6 (38): 765-771.

12. Yang L., Yang C. Q. Liver cirrhosis and secondary osteoporosis. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chin J Hepatol. 2021; 29 (3): 204-208. DOI: 10.3760/cma.j.cn501113-20210208-00078.

13. Behera J., Ison J., Tyagi S. C., Tyagi N. The role of gut microbiota in bone homeostasis. Bone. 2020; 135: 115317. DOI: 10.1016/j.bone.2020.115317.

14. Pandey H., Tang D. W. T., Wong S. H., Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel). 2023; 15 (3): 866.

15. Behera J, Ison J, Tyagi SC, Tyagi N. The role of gut microbiota in bone homeostasis. Bone. 2020; 135: 115317. DOI: 10.1016/j.bone.2020.115317.

16. Xu Z., Xie Z., Sun J., Huang S., Chen Y., Li C., Sun X., Xia B., Tian L., Guo C., et al. Gut Microbiome Reveals Specific Dysbiosis in Primary Osteoporosis. Front. Cell Infect. Microbiol. 2020; 10: 160.

17. Cronin O., Keohane D. M., Cormac E. M., Nugent H., Nugent M., Molloy C., O’Toole P. W., Shanahan F., Molloy M. G., et al. Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology. 2019; 58: 2295-2304.

18. Wei M., Li C., Dai Y., Zhou H., Cui Y., Zeng Y., Huang Q., Wang Q. High-Throughput Absolute Quantification Sequencing Revealed Osteoporosis-Related Gut Microbiota Alterations in Han Chinese Elderly. Front. Cell Infect. Microbiol. 2021; 11: 630372.

19. Meyer C., Brockmueller A., Ruiz de Porras V., Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells. 2024; 13: 1145. https://DOI.org/10.3390/cells13131145.

20. Wu H. J., et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010; 32: 815-827. DOI: 10.1016/j.immuni.2010.06.001.

21. Tan T. G., et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A. 2016; 113: E8141-E8150. DOI: 10.1073/pnas.1617460113.

22. Tu Y., Yang R., Xu X., Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol. 2021; 110 (3): 525-537. DOI: 10.1002/JLB.3MR0321-755R.

23. Chelakkot C., Ghim J., Ho Ryu S. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp & Mol Med. 2018; 50.

24. Lucas S., Omata Y., Hofmann J., et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nature Communications. 2018; 9 (1): 55. DOI: 10.1038/s41467-017-02490-4.

25. Hamilton M. K., et al. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region-dependent. Am J Physiol Gastrointest Liver Physiol. May 15; 308 (10): G840-851. DOI: 10.1152/ajpgi.00029.2015.

26. Hou G. Q., et al. Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expression in RAW264. 7 cells. Int J Mol Med. 2013; 32 (2): 503-510. DOI: 10.3892/ijmm.2013.1406.

27. Li L., Rao S., Cheng Y., Zhuo X., Deng C., Xu N., Yang L. Microbial osteoporosis: The interplay between the gut microbiota and bones via host metabolism and immunity. Microbiology Open. 2019; 8 (8). DOI:10.1002/mbo3.810.

28. Chongwatpol P., et al. Implications of compromised zinc status on bone loss associated with chronic inflammation in C57BL/6 mice. J Inflamm Res. 2015; 8: 117-128. DOI: 10.2147/JIR.S82261.

29. Boutagy N. E., McMillan R. P., Frisard M. I., et al. Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie. 2016; 124: 11-20. https://DOI.org/10.1016/j.biochi.2015.06.020.

30. Kozarcanin H., Lood C., Munthe-Fog L., et al. The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation. J Thromb Haemost. 2016; 14 (3): 531-545. https://doi.org/10.1111/jth.13208.

31. Lau W. L., Kalantar-Zadeh K., Vaziri N. D. The Gut as a Source of Inflammation in Chronic Kidney Disease. Nephron. 2015; 130 (2): 92-98. https://DOI.org/10.1159/000381990.

32. Li L., Rao S., Cheng Y., Zhuo X., Deng C., Xu N., Yang L. Microbial osteoporosis: The interplay between the gut microbiota and bones via host metabolism and immunity. Microbiology Open. 2019; 8(8). DOI:10.1002/mbo3.810.

33. Abboud M., Papandreou D. Gut Microbiome, Probiotics and Bone: An Updated Mini Review. Open Access Maced J Med Sci. 2019; 7 (3): 478-481. DOI: 10.3889/oamjms.2019.047.

34. Upadhyay J., Farr O. M., Mantzoros C. S. The role of leptin in regulating bone metabolism. Metabolism. 2015; 64 (1): 105-113. DOI: 10.1016/j.metabol.2014.10.021.

35. Ducy P., Karsenty G. The two faces of serotonin in bone biology. J Cell Biol. 2010; 191 (1): 7-13. DOI: 10.1083/jcb.201006123.

36. Upadhyay J., Farr O. M., Mantzoros C. S. The role of leptin in regulating bone metabolism. Metabolism. 2015; 64 (1): 105-13. DOI: 10.1016/j.metabol.2014.10.021.

37. Zvenigorodskaya L. A., Shinkin M. V., Mkrtumyan A. M., et al. The role of liver and gastrointestinal microflora in the pathogenesis of type 2 diabetes mellitus and obesity. Effektivnaya farmakoterapiya. 2020; 16 (36): 32-42. (In Russ.) DOI 10.33978/2307-3586-2020-16-36-32-42

38. Tu Y., Yang R., Xu X., Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol. 2021; 110 (3): 525-537. DOI: 10.1002/JLB.3MR0321-755R.

39. Markowiak-Kopeć P., Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients. 2020; 12: 1107.

40. Kondo T., Chiba T., Tousen Yu. Short-chain fatty acids, acetate and propionate, directly upregulate osteoblastic differentiation. Int. J. Food Sci. Nutr. 2022; 73: 800-808. DOI: 10.1080/09637486.2022.2078285.

41. Tyagi A. M., Yu M., Darby T. M., Vaccaro C., Li J. Y., Owens J. A., Hsu E., Adams J., Weitzmann M. N., Jones R. M., et al. The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity. 2018; 49: 1116-1131.

42. He Y., Chen Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis: A review. Osteoporos. Int. 2022; 33: 2495-25063.

43. Wallimann A., Magrath W., Pugliese B., Stocker N., Westermann P., Heider A., Gehweiler D., Zeiter S., Claesson M. J., Richards R. G., Akdis C. A., Hernandez C. J., O'Mahony L., Thompson K., Moriarty T. F. Butyrate Inhibits Osteoclast Activity In Vitro and Regulates Systemic Inflammation and Bone Healing in a Murine Osteotomy Model Compared to Antibiotic-Treated Mice. Mediators Inflamm. 2021; 2021: 8817421. DOI: 10.1155/2021/8817421.

44. Rosser E. C., Piper C. J. M., Matei D. E., et al. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory b cells. Cell Metabolism . 2020; 31 (4): 837-851. DOI: 10.1016/j.cmet.2020.03.003.

45. Sun G., Wang Y., Ti Y., Wang J., Zhao J., Qian H. Regulatory b cell is critical in bone union process through suppressing proinflammatory cytokines and stimulating foxp3 in treg cells. Clinical and Experimental Pharmacology & Physiology. 2017; 44 (4): 455-462. DOI: 10.1111/1440-1681.12719.

46. Ono T., Okamoto K., Nakashima T., et al. IL-17-producing γδ T cells enhance bone regeneration. Nature Communications. 2016; 7 (1, article 10928). DOI: 10.1038/ncomms10928.

47. Prystaz K., Kaiser K., Kovtun A., et al. Distinct effects of il-6 classic and transsignaling in bone fracture healing. The American Journal of Pathology. 2018; 188 (2): 474-490. DOI: 10.1016/j.ajpath.2017.10.011.

48. Ervin S. M., Li H., Lim L., Roberts L. R., Liang X., Mani S., Redinbo M. R. Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J. Biol. Chem. 2019; 294: 18586-18599.

49. Li J.-Y., Yu M., Pal S., Tyagi A. M., Dar H., Adams J., Weitzmann M. N., Jones R. M., Pacifici R. Parathyroid hormone–dependent bone formation requires butyrate production by intestinal microbiota. J. Clin. Investig. 2020; 130: 1767-1781.

50. Das M., Cronin O., Keohane D. M., Cormac E. M., Nugent H., Nugent M., Molloy C., O’Toole P. W., Shanahan F., Molloy M. G., et al. Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology. 2019; 58: 2295-2304.

51. Singh P., Rawat A., Alwakeel M., Sharif E., Al Khodor S. The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals. Sci. Rep. 2020; 10: 21641.

52. Wei M., Li C., Dai Y., Zhou H., Cui Y., Zeng Y., Huang Q., Wang Q. High-Throughput Absolute Quantification Sequencing Revealed Osteoporosis-Related Gut Microbiota Alterations in Han Chinese Elderly. Front. Cell Infect. Microbiol. 2021; 11: 630372.

53. Tu Y., Yang R., Xu X., Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol. 2021; 110 (3): 525-537. DOI: 10.1002/JLB.3MR0321-755R.

54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061317/.

55. Loomes K. .M, Spino C., Goodrich N. P., Hangartner T. N., Marker A. E., Heubi J. E., et al. Bone Density in Children With Chronic Liver Disease Correlates With Growth and Cholestasis. Hepatology. 2019; 69 (1): 245-257. DOI: 10.1002/hep.30196.

56. Zhao Y. X., Song Y. W., Zhang L., Zheng F. J., Wang X. M., Zhuang X. H., Wu F., Liu J. Association between bile acid metabolism and bone mineral density in postmenopausal women. Clinics (Sao Paulo). 2020; 75: e1486. DOI: 10.6061/clinics/2020/e1486.

57. Zhao Y. X., Song Y. W., Zhang L., Zheng F. J., Wang X. M., Zhuang X. H., Wu F., Liu J. Association between bile acid metabolism and bone mineral density in postmenopausal women. Clinics (Sao Paulo). 2020; 75: e1486. DOI: 10.6061/clinics/2020/e1486.

58. Schmid A., Neumann H., Karrasch T., Liebisch G., Schäffler A. Bile acid metabolome after an oral lipid tolerance test by liquid chromatography-tandem mass spectrometry (LC-MS/MS). PLoS One. 2016; 11 (2): e0148869. https://DOI.org/10.1371/journal.pone.0148869.

59. Zagoskin P. P., Erlykina E. I. Bile acids – a new type of steroid hormones regulating non-specific energy expenditure of the organism (review). Modern technologies in medicine. 2020; 12 (5): 114-128. (In Russ.) http://www.stm-journal.ru/ru/numbers/2020/5/1673/html

60. Han C. Y. Update on FXR biology: promising therapeutic target? Int J Mol Sci. 2018; 19 (7): 2069. https://DOI.org/10.3390/ijms19072069.

61. De Magalhaes Filho C. D., Downes M., Evans R. M. Farnesoid X receptor an emerging target to combat obesity. Dig Dis. 2017; 35 (3): 185-190. https://doi.org/10.1159/000450909.

62. Bozadjieva N., Heppner K. M., Seeley R. J. Targeting FXR and FGF19 to Treat Metabolic Diseases-Lessons Learned From Bariatric Surgery. Diabetes. 2018; 67 (9): 1720-1728. DOI: 10.2337/dbi17-0007.

63. Zhao Y. X., Song Y. W., Zhang L., Zheng F. J., Wang X. M., Zhuang X. H., Wu F., Liu J. Association between bile acid metabolism and bone mineral density in postmenopausal women. Clinics (Sao Paulo). 2020; 75: e1486. DOI: 10.6061/clinics/2020/e1486.

64. Cho S. W., An J. H., Park H., Yang J., Choi H. J., Kim S. W., et al. Positive regulation of osteogenesis by bile acid through FXR. J Bone Miner Res. 2013; 28 (10): 2109-2121. DOI: 10.1002/jbmr.1961.

65. Id Boufker H., Lagneaux L., Fayyad-Kazan H., Badran B., Najar M., Wiedig M., et al. Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone. 2011; 49 (6): 1219-1231. DOI: 10.1016/j.bone.2011.08.013.

66. Keitel V., Stindt J., Häussinger D. Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors. Handb Exp Pharmacol 2019; 256: 19-49. https://doi.org/10.1007/164_2019_230.

67. Deutschmann K., Reich M., Klindt C., Dröge C., Spomer L., Häussinger D., Keitel V. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis. 2018; 1864 (4 Pt B): 1319-1325. https://DOI.org/10.1016/j.bbadis.2017.08.021.

68. Chen X., Yan L., Guo Z., Chen Y., Li M., Huang C., Chen Z., Meng X. Chenodeoxycholic acid attenuates high-fat diet-induced obesity and hyperglycemia via the G protein-coupled bile acid receptor 1 and proliferator-activated receptor γ pathway. Exp Ther Med. 2017; 14 (6): 5305-5312, https://doi.org/10.3892/etm.2017.5232.

69. Su J., Zhang Q., Qi H., Wu L., Li Y., Yu D., Huang W., Chen W. D., Wang Y. D. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) protects against renal inflammation and renal cancer cell proliferation and migration through antagonizing NF-κB and STAT3-signaling pathways. Oncotarget. 2017; 8 (33): 54378-54387, https://doi.org/10.18632/oncotarget.17533.

70. Mackowiak B., Hodge J., Stern S., Wang H. The roles of xenobiotic receptors: beyond chemical disposition. Drug Metab Dispos. 2018; 46 (9): 1361-1371, https://doi.org/10.1124/dmd.118.081042.

71. Lajczak N. K., Saint-Criq V., O’Dwyer A. M., Perino A., Adorini L., Schoonjans K., Keely S. J. Bile acids, deoxycholic acid, and ursodeoxycholic acid differentially regulate human β-defensin-1 and-2 secretion by colonic epithelial cells. FASEB J. 2017; 31 (9): 3848-3857, https://doi.org/10.1096/fj.201601365R.

72. Jiang X., Lian M., Li Y., Zhang W., Wang Q., Wei Y., Zhang J., Chen W., Xiao X., Miao Q., Bian Z., Qiu D., Fang J., Ansari A. A., Leung P. S. C., Coppel R. L., Tang R., Gershwin M. E., Ma X. The immunobiology of mucosal-associated invariant T cell (MAIT) function in primary biliary cholangitis: regulation by cholic acid induced Interleukin-7. J Autoimmun. 2018; 90: 64-75. https://doi.org/10.1016/j.jaut.2018.01.007.

73. O’Dwyer A. M., Lajczak N. K., Keyes J. A., Ward J. B., Greene C. M., Keely S. J. Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes. Am J Physiol Gastrointest Liver Physiol. 2016; 311 (2): G334-G341. https://doi.org/10.1152/ajpgi.00406.2015.

74. Chiang J. Y. Bile acid metabolism and signaling. Compr Physiol. 2013; 3 (3): 1191-1212. https://doi.org/10.1002/cphy.c120023.

75. Wammers M., Schupp A. K., Bode J. G., Ehlting C., Wolf S., Deenen R., Köhrer K., Häussinger D., Graf D. Reprogramming of pro-inflammatory human macrophages to an anti-inflammatory phenotype by bile acids. Sci Rep. 2018; 8 (1): 255. https://doi.org/10.1038/s41598-017-18305-x.

76. Kucheryavy Yu. A., Cheremushkin S. V. Evaluation of therapeutic efficacy of the reference preparation ursodeoxycholic acid and its analogues in dissolution of biliary sludge: a metaanalysis. Consilium Medicum. 2022; 24 (12): 860-864. (In Russ.) DOI: 10.26442/20751753.2022.12.201429

77. Vachliotis I. D., Anastasilakis A. D., Goulas A., Goulis D. G., Polyzos S. A. Nonalcoholic fatty liver disease and osteoporosis: A potential association with therapeutic implications. Diabetes Obes Metab. 2022; 24 (9): 1702-1720. DOI: 10.1111/dom.14774.

78. https://www.rlsnet.ru/.


Review

For citations:


Ljaljukova E.A., Chernysheva E.N., Lyalyukov A.V. Osteoporosis in patients with non-alcoholic fatty liver disease: a review of the literature. Lechaschi Vrach. 2025;(1):38-46. (In Russ.) https://doi.org/10.51793/OS.2025.28.1.006

Views: 123

JATS XML

ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)