Preview

Lechaschi Vrach

Advanced search

Modern views on the management tactics of patients with sarcopenia in combination with non-alcoholic fatty liver disease

https://doi.org/10.51793/OS.2024.27.8.004

Abstract

Background. The prevalence of sarcopenia in the world is 10% in both men and women. In recent years, there has been an increasing accumulation of information about the increased prevalence of sarcopenia in patients with non-alcoholic fatty liver disease. It is known that hypodynamia is accompanied by a decrease in muscle mass and affects the profile of myokine production and its effect on preventing further loss of muscle mass and accumulation of intrahepatic fat. Irisin myokine secretion is induced by physical activity, which seems to explain the negative effect of hypodynamia on hepatic steatosis. There is also an association between physical activity and hepatokine production. In addition, loss of muscle strength and physical inactivity is a risk factor for more progressive loss of muscle mass, fat accumulation and worsening inflammation, leading to a vicious cycle of recurrent hypodynamia and even more severe sarcopenia.
Results. The review article provides data on the effect of various types of physical activity on sarcopenia. Special attention is paid to the swarm of myokines in the pathogenesis of sarcopenia and the modern drug myostatin inhibitor. Aspects of the role of hyperammonemia in the pathogenesis of sarcopenia and its influence on this pathogenetic mechanism are considered. The aspects of nutritional support for patients with sarcopenia are described.

About the Authors

V. A. Akhmedov
Omsk State Medical University
Россия

Vadim A. Akhmedov, Dr. of Sci. (Med.), Professor, Head of the Department of Medical Rehabilitation of Additional Professional Education

5 Petra Nekrasova str., Omsk, 644037



A. S. Isaeva
Omsk State Medical University
Россия

Anna S. Isaeva, Cand. of Sci. (Med.), Associate Professor, Department of Medical Rehabilitation of Additional Professional Education

Petra Nekrasova str., Omsk, 644037



V. S. Marinenko
Maikop State Technological University
Россия

Vyacheslav S. Marinenko, internist, PhD student of the Department of Hospital Therapy and Postgraduate Education

191 Pervomayskaya str., Maikop, 385000



References

1. Rosenberg I. H. Sarcopenia: origins and clinical relevance. Clin Geriatr Med. 2011; 27: 337-339. DOI: 10.1016/j.cger.2011.03.003.

2. Cruz-Jentoft A. J., Baeyens J. P., Bauer J. M., et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010; 39: 412-423. DOI: 10.1093/ageing/afq034.

3. Shafiee G., Keshtkar A., Soltani A., et al. Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. J Diabetes Metab Disord. 2017; 16: 21. DOI: 10.1186/s40200-017-0302-x.

4. Habig G., Smaltz C., Halegoua-DeMarzio D. Presence and Implications of Sarcopenia in Non-alcoholic Steatohepatitis. Metabolites. 2021; 11 (4): 242. DOI: 10.3390/metabo11040242.

5. Choe H. J., Lee H., Lee D., et al. Different effects of low muscle mass on the risk of non-alcoholic fatty liver disease and hepatic fibrosis in a prospective cohort. J Cachexia Sarcopenia Muscle. 2023; 14 (1): 260-269. DOI: 10.1002/jcsm.13125.

6. Golabi P., Gerber L., Paik J. M., et al. Contribution of sarcopenia and physical inactivity to mortality in people with non-alcoholic fatty liver disease. JHEP Rep. 2020; 2 (6): 100171. DOI: 10.1016/j.jhepr.2020.100171.

7. Gonzalez A., Valero-Breton M., Huerta-Salgado C., et al. Impact of exercise training on the sarcopenia criteria in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Transl Myol. 2021; 31 (1): 9630. DOI: 10.4081/ejtm.2021.9630.

8. Kim Y. Emerging Treatment Options for Sarcopenia in Chronic Liver Disease. Life (Basel). 2021; 11 (3): 250. DOI: 10.3390/life11030250.

9. Pasco J. A., Sui S. X., West E. C., et al. Fatty Liver Index and Skeletal Muscle Density. Calcif Tissue Int. 2022; 110 (6): 649-657. DOI: 10.1007/s00223-021-00939-9.

10. Kirk B., Mooney K., Cousins R., et al. Effects of exercise and whey protein on muscle mass, fat mass, myoelectrical muscle fatigue and health-related quality of life in older adults: A secondary analysis of the Liverpool Hope University — Sarcopenia Ageing Trial (LHU-SAT). Eur J Appl Physiol. 2020; 120 (2): 493-503. DOI: 10.1007/s00421-019-04293-5.

11. Román E., Torrades M. T., Nadal M. J., et al. Randomized Pilot Study: Effects of an Exercise Programme and Leucine Supplementation in Patients with Cirrhosis. Dig. Dis. Sci. 2014; 59: 1966-1975. DOI: 10.1007/s10620-014-3086-6.

12. Vingren J. L., Kraemer W. J., Ratamess N. A., et al. Testosterone physiology in resistance exercise and training: The up-stream regulatory elements. Sports Med. 2010; 40 (12): 1037-1053. DOI: 10.2165/11536910-000000000-00000.

13. Rigor J., Vasconcelos R., Lopes R., et al. Association of Muscle Strength with Non-Alcoholic Fatty Liver Disease in Korean Adults. Minerva Gastroenterol (Torino). 2023; 69 (3): 374-381. DOI: 10.3390/ijerph19031675.

14. Kang S. H., Yoon E. L. Sarcopenic Obesity, the Possible Culprit for Nonalcoholic Fatty Liver Disease or Fibrosis. Gut Liver. 2023; 17 (1): 8-9. DOI: 10.5009/gnl220543.

15. Hornberger T. A., Chu W. K., Mak Y. W., et al. The role of phospholipase d and phosphatidic acid in the mechanical activation of motor signaling in skeletal muscle. Proc Natl Acad Sci USA. 2006; 103 (12): 4741-4746. DOI: 10.1073/pnas.0600678103.

16. Yi Y., Wang C., Ding Y., et al. Diet was less significant than physical activity in the prognosis of people with sarcopenia and metabolic dysfunctionassociated fatty liver diseases: Analysis of the National Health and Nutrition Examination Survey III. Front Endocrinol (Lausanne). 2023; 14: 1101892. DOI: 10.3389/fendo.2023.1101892.

17. Zembura M., Matusik P. Sarcopenic Obesity in Children and Adolescents: A Systematic Review. Front Endocrinol (Lausanne). 2022; 13: 914740. DOI: 10.3389/fendo.2022.914740.

18. Carey E. J., Steidley D. E., Aqel B. A., et al. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transpl. 2010; 16: 1373-1378. DOI: 10.1097/LVT.0000000000000071.

19. Landi F., Cesari M., Calvani R., et al. The "Sarcopenia and physical frailty in older people: Multi-component treatment strategies" (Sprintt) randomized controlled trial: Design and methods. Aging Clin Exp Res. 2017; 29 (1): 89-100. DOI: 10.1007/s40520-016-0715-2.

20. Lee S. J., Lehar A., Meir J. U., et al. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight. Proc. Natl. Acad. Sci. USA. 2020; 117: 23942–23951. DOI: 10.1073/pnas.2014716117.

21. Becker C., Lord S. R., Studenski S. A., et al. Myostatin antibody (LY2495655) in older weak fallers: A proof-of-concept, randomised, phase 2 trial. Lancet. Diabetes Endocrinol. 2015; 3: 948-957. DOI: 10.1016/S2213-8587(15)00298-3.

22. Woodhouse L., Gandhi R., Warden S. J., et al. A Phase 2 Randomized Study Investigating the Efficacy and Safety of Myostatin Antibody LY2495655 versus Placebo in Patients Undergoing Elective Total Hip Arthroplasty. J. Frailty Aging 2016; 5: 62-70. DOI: 10.14283/jfa.2016.81.

23. Hong Y., Lee J. H., Jeong K. W., et al. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy J. Cachexia Sarcopenia Muscle. 2019; 10 (4): 903-918. DOI: 10.1002/jcsm.12434.

24. Campbell C., McMillan H. J., Mah J. K., et al. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial. Muscle Nerve. 2017; 55: 458-464. DOI: 10.1002/mus.25268.

25. Pearsall R. S., Davies M. V., Cannell M., et al. Follistatin-based ligand trap ACE-083 induces localized hypertrophy of skeletal muscle with functional improvement in models of neuromuscular disease. Sci. Rep. 2019; 9: 11392. DOI: 10.1038/s41598-019-47818-w.

26. Glasser C. E., Gartner M. R., Wilson D., et al. Locally acting ACE-083 increases muscle volume in healthy volunteers. Muscle Nerve. 2018; 57: 921-926. DOI: 10.1002/mus.26113.

27. Lach-Trifilieff E., Minetti G. C., Sheppard K., et al. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol. Cell. Biol. 2014; 34: 606-618. DOI: 10.1128/MCB.01307-13.

28. Rooks D., Praestgaard J., Hariry S., et al. Treatment of Sarcopenia with Bimagrumab: Results from a Phase II, Randomized, Controlled, Proof-of-Concept Study. J. Am. Geriatr. Soc. 2017; 65: 1988-1995. DOI: 10.1111/jgs.14927.

29. Polkey M. I., Praestgaard J., Berwick A., et al. Activin Type II Receptor Blockade for Treatment of Muscle Depletion in Chronic Obstructive Pulmonary Disease. A Randomized Trial. Am. J. Respir. Crit. Care Med. 2019; 199: 313-320. DOI: 10.1164/rccm.201802-0286OC.

30. Hanna M. G., Badrising U. A., Benveniste O., et al. Safety and efficacy of intravenous bimagrumab in inclusion body myositis (RESILIENT): A randomised, double-blind, placebo-controlled phase 2b trial. Lancet Neurol. 2019; 18: 834-844. DOI: 10.1016/S1474-4422(19)30200-5.

31. Rooks D., Swan T., Goswami B., et al. Bimagrumab vs Optimized Standard of Care for Treatment of Sarcopenia in Community-Dwelling Older Adults: A Randomized Clinical Trial. JAMA Netw. Open. 2020; 3: e2020836. DOI: 10.1001/jamanetworkopen.2020.20836.

32. Kabadi U. M. The association of hepatic glycogen depletion with hyperammonemia in cirrhosis. Hepatology. 1987; 7: 821-824. DOI: 10.1002/hep.1840070505.

33. Anand A. C. Nutrition and Muscle in Cirrhosis. J. Clin. Exp. Hepatol. 2017; 7: 340–357. DOI: 10.1016/j.jceh.2017.11.001.

34. Enguita M., Razquin N., Pamplona, et al. The cirrhotic liver is depleted of docosahexaenoic acid (DHA), a key modulator of NF-kappaB and TGFbeta pathways in hepatic stellate cells. Cell Death Dis. 2019; 10: 14. DOI: 10.1038/s41419-018-1243-0.

35. Bischoff S. C., Bernal W., Dasarathy S., et al. ESPEN practical guideline: Clinical nutrition in liver disease. Clin. Nutr. 2020; 39: 3533-3562. DOI: 10.1016/j.clnu.2020.09.001.

36. Tsien C. D., McCullough A. J., Dasarathy S. Late evening snack: Exploiting a period of anabolic opportunity in cirrhosis. J. Gastroenterol. Hepatol. 2012; 27: 430-441. DOI: 10.1111/j.1440-1746.2011.06951.x.

37. Norman K., Kirchner H., Freudenreich M., et al. Three month intervention with protein and energy rich supplements improve muscle function and quality of life in malnourished patients with non-neoplastic gastrointestinal disease—A randomized controlled trial. Clin. Nutr. 2008; 27: 48-56. DOI: 10.1016/j.clnu.2007.08.011.

38. Park J. G., Tak W. Y., Park S. Y., et al. Effects of Branched-Chain Amino Acid (BCAA) Supplementation on the Progression of Advanced Liver Disease: A Korean Nationwide, Multicenter, Prospective, Observational, Cohort Study. Nutrients. 2020; 12 (5): 1429. DOI: 10.3390/nu12051429.

39. Thomsen K. L., Eriksen P. L., Kerbert A. J., et al. Role of ammonia in NAFLD: An unusual suspect. JHEP Rep. 2023; 5 (7): 100780. DOI: 10.1016/j.jhepr.2023.100780.

40. Mishra S., Welch N., Karthikeyan M., et al. Dysregulated cellular redox status during hyperammonemia causes mitochondrial dysfunction and senescence by inhibiting sirtuin-mediated deacetylation. Aging Cell. 2023; 22 (7): e13852. DOI: 10.1111/acel.13852.

41. Butterworth R. .F, Canbay A. Hepatoprotection by L-Ornithine L-Aspartate in Non-Alcoholic Fatty Liver Disease. Dig Dis. 2019; 37 (1): 63-68. DOI: 10.1159/000491429.

42. Pichon C., Nachit M., Gillard J., et al. Impact of L-ornithine L-aspartate on non-alcoholic steatohepatitis-associated hyperammonemia and muscle alterations. Front Nutr. 2022; 9: 1051157. DOI: 10.3389/fnut.2022.1051157.

43. Hey P., Gow P., Testro A. G., et al. Nutraceuticals for the treatment of sarcopenia in chronic liver disease. Clin. Nutr. ESPEN. 2021; 41: 13-22. DOI: 10.1016/j.clnesp.2020.11.015.

44. VAN Cutsem J., Roelands B., Pluym B., et al. Can Creatine Combat the Mental Fatigue-Associated Decrease in Visuomotor Skills? Med. Sci. Sports Exerc. 2020; 52: 120-130. DOI: 10.1249/MSS.0000000000002122.

45. Antonio J.. Candow D. G., Forbes S. C., et al. Common Questions and Misconceptions about Creatine Supplementation: What Does the Scientific Evidence Really Show? J. Int. Soc. Sports Nutr. 2021; 18: 13. DOI: 10.1186/s12970-021-00412-w.

46. Bhanji R. A., Moctezuma-Velazquez C., Duarte-Rojo A., et al. Myosteatosis and Sarcopenia Are Associated with Hepatic Encephalopathy in Patients with Cirrhosis. Hepatol. Int. 2018; 12: 377-386. DOI: 10.1007/s12072-018-9875-9.

47. Forbes S. C., Candow D. G., Ostojic S. M., et al. Meta-Analysis Examining the Importance of Creatine Ingestion Strategies on Lean Tissue Mass and Strength in Older Adults. Nutrients. 2021; 13: 1912. DOI: 10.3390/nu13061912.

48. Casciola R., Leoni L., Cuffari B., et al. Creatine Supplementation to Improve Sarcopenia in Chronic Liver Disease: Facts and Perspectives. Nutrients. 2023; 15 (4): 863. DOI: 10.3390/nu15040863.


Review

For citations:


Akhmedov V.A., Isaeva A.S., Marinenko V.S. Modern views on the management tactics of patients with sarcopenia in combination with non-alcoholic fatty liver disease. Lechaschi Vrach. 2024;(8):29-34. (In Russ.) https://doi.org/10.51793/OS.2024.27.8.004

Views: 101

JATS XML

ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)