Preview

Lechaschi Vrach

Advanced search

Immune parameters of patients in different periods of coronavirus infection

https://doi.org/10.51793/OS.2024.27.4.011

Abstract

Background. COVID-19 is a viral infectious disease that has infected more than 40 million people. The relevance of studying various mechanisms of immunological protection in the acute and post-acute periods of this disease is beyond doubt.

Objective. The aim of the work was to assess the state of the indicators of blood cells, phagocytic activity and ATP in white blood cells, depending on the period of coronavirus infection caused by the SARS-CoV-19 virus.

Materials and methods. There were 70 patients (41 women and 29 men) in the acute period of covid and 54 patients (38 women and 26 men) in the post-acute period aged from 18 to 68 years. The patients were examined in the acute period of the disease (upon admission to the hospital), in the period of early convalescence (before discharge from the hospital), in the post-acute period 30-35 days after discharge from the hospital and 90-95 days after discharge. In all patients, the number of leukocytes, lymphocytes and neutrophils in peripheral blood was calculated in absolute numbers and percentages of t, the concentration of ATP and phagocytic parameters were estimated.

Results. Changes in the composition of the leukocyte formula in the dynamics of the infectious viral process were detected depending on the severity of COVID-19. The long-lasting proinflammatory nature of pathological changes in the body against and after COVID-19 leads to depletion of the energy potential of innate immunity cells, what follows from the concentration of ATP and significantly reduced phagocytic parameters in acute and post-acute periods in patients regardless of the severity of the coronavirus infection. In the long-term period (90-95 days after discharge), normalization of some phagocytic parameters was not detected in the group of patients who had a severe form of COVID-19, which may be the cause of various bacterial and fungal pathologies and which should be taken into account in the selection of methods for preventing the development of complications.

About the Authors

A. A. Ploskireva
Central Research Institute of Epidemiology of Rospotrebnadzor
Россия

Antonina A. Ploskireva, Dr. of Sci. (Med.), Professor of the Russian Academy of Sciences, Deputy Director for Clinical Work

3a Novogireevskaya str., Moscow, 111123



Z. F. Kharaeva
Kabardino-Balkarian State University named after H. M. Berbekov
Россия

Zaira F. Kharaeva, Dr. of Sci. (Med.), Professor, Head of the Department of Microbiology, Virology and Immunology

173 Chernyshevsky St., Nalchik, 360004



A. R. Marzhokhova
Central Research Institute of Epidemiology of Rospotrebnadzor
Россия

Asiyat R. Marzhokhova, Cand. of Sci. (Med.), Senior Researcher of the Clinical Department of Infectious Diseases

3a Novogireevskaya str., Moscow, 111123



Zh. B. Ponezheva
Central Research Institute of Epidemiology of Rospotrebnadzor
Россия

Zhanna B. Ponezheva, Dr. of Sci. (Med.), Head of the Clinical Department of Infectious Pathology

3a Novogireevskaya str., Moscow, 111123



M. Yu. Marzhokhova
Kabardino-Balkarian State University named after H. M. Berbekov
Россия

Madina Yu. Marzhokhova, Dr. of Sci. (Med.), Professor, Head of the Department of Infectious Diseases

173 Chernyshevsky St., Nalchik, 360004



References

1. John J. L. Jacobs Persistent SARS-2 infections contribute to long COVID-19. Med Hypotheses. 2021; 149: 110538. Published online 2021 Feb 16. DOI: 10.1016/j.mehy.2021.110538.

2. Baryshnikova G. A., Chorbinskaya S. A., Zimina T. A., Stepanova I. I., Kudryavtseva N. A. COVID-19: the place of metabolic correctors in the therapy of patients with postcovid syndrome. Lechaschi Vrach. 2022; 3 (25): 80-86. (In Russ.) DOI: 10.51793/OS.2022.25.3.013.

3. Huang C., Huang L., Wang Y., et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021. DOI: 10.1016/S0140-6736(20)32656-8.

4. Slepneva L. V., Khmylova G. A. The mechanism of damage to energy metabolism in hypoxia and possible ways of its correction with fumarate-containing solutions. Nauchno-prakticheskii zhurnal Transfuziologiya. 2013; 2: 21-36. (In Russ.)

5. Curi R., Levada-Pires A. C,. Silva E. B. D., Poma S. O., Zambonatto R. F., Domenech P., Almeida M. M., Gritte R. B., Souza-Siqueira T., Gorjão R., Newsholme P., Pithon-Curi T. C. The Critical Role of Cell Metabolism for Essential Neutrophil Functions. Cell Physiol Biochem. 2020; 54 (4): 629-647. DOI: 10.33594/000000245.

6. Yin C., Wu C., Du X., Fang Y., Pu J., Wu J., Tang L., Zhao W., Weng Y., Guo X., Chen G., Wang Z. PRL2 Controls Phagocyte Bactericidal Activity by Sensing and Regulating ROS. Front Immunol. 2018; 9: 2609. DOI: 10.3389/fimmu.2018.02609.

7. Soehnlein O., Kenne E., Rotzius P., Eriksson E. E., Lindbom L. Neutrophil secretion products regulate anti-bacterial activity in monocytes and macrophages. Clinical and experimental immunology. 2008; 1 (151): 139-145. DOI: 10.1111/j.1365-2249.2007.03532.

8. Mayadas T., Cullere X., Lowell C. The Multifaceted Functions of Neutrophils. Annu Rev Pathol. 2014; 9: 181-218. DOI: 10.1146/annurevpathol-020712-164023.

9. Sansonetti P. Phagocytosis of bacterial pathogens: implications in the host response. Seminars in immunology. 2001; 6 (13): 381-390. DOI: 10.1006/smim.2001.0335.

10. Zhou Z., Yu X. Phagosome maturation during the removal of apoptotic cells: receptors lead the way. Trends in cell biology. 2008; 10 (18): 474-485. DOI: 10.1016/j.tcb.2008.08.002.

11. Zhou F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054-1062. DOI: 10.1016/s0140-6736(20)30566-3.

12. Terpos E. et al. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020; 95: 834-847. DOI: 10.1002/ajh.25829.

13. Platt N., Fineran P. Measuring the phagocytic activity of cells. Methods Cell Biol. 2015; 126: 287-304. DOI: 10.1016/bs.mcb.2014.10.025. Epub 2015 Jan 14. PMID: 25665451.

14. Nielsen S. L., Black F. T., Storgaard M,. Obel N. Evaluation of a method for measurement of intracellular killing of Staphylococcus aureus in human neutrophil granulocytes. APMIS. 1995; 103 (6): 460-468. PMID: 7546649.

15. Nesterova I. V., Kolesnikova N. V., Chudilova G. A., Lomtatidze L. V., Kovaleva S. V., Evglevsky A. A., Nguyen T. D. L. The new look at neutrophilic granulocytes: rethinking old dogmas. Part 2. Infektsiya i immunitet. Infektsiya i immunitet. 2018; 1 (8): 7-18. (In Russ.) DOI: 10.15789/2220-7619-2018-1-7-18.

16. Lyapina S. A., Fedotova G. G. Reactive changes of neutrophils in bronchopulmonary diseases. Sovremennye problemy nauki i obrazovaniya. 2018; 6. (In Russ.) URL: https://science-education.ru/ru/article/view?id=28285 (Acessed: 15.06.2023).

17. Savchenko A. A., Gvozdev I. I., Borisov A. G., Cherdantsev D. V., Pervova O. V., Kudryavtsev I. V., Moshev A. V. Features of phagocytic activity and the state of respiratory explosion of blood neutrophils in patients with widespread purulent peritonitis in the dynamics of the postoperative period. Infektsiya i immunitet. 2017; 1: 51-60. (In Russ). DOI: 10.15789/2220-7619-2017-1-51-60.


Review

For citations:


Ploskireva A.A., Kharaeva Z.F., Marzhokhova A.R., Ponezheva Zh.B., Marzhokhova M.Yu. Immune parameters of patients in different periods of coronavirus infection. Lechaschi Vrach. 2024;(4):77-84. (In Russ.) https://doi.org/10.51793/OS.2024.27.4.011

Views: 145

JATS XML

ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)