Preview

Lechaschi Vrach

Advanced search

The role of non-antibacterial agents in the prevention of recurrent urinary tract infections

https://doi.org/10.51793/OS.2024.27.1.004

Abstract

Background. Urinary tract infections are a pressing problem of modern medicine due to their widespread prevalence and socio-economic significance. Every year, recurrent urinary tract infections occur in more than 150 million people worldwide, which is second only to acute respiratory infections in incidence. In addition, the problem is not only medical, but also socio-economic in nature, since in most cases recurrent urinary tract infections occur among the working population. This can lead to temporary disability and a large number of outpatient consultations. Recurrent urinary tract infections are one of the main causes of hospital-acquired infections, which leads to serious financial expenses. In addition, the quality of life of such patients is significantly impaired: frequent relapses lead to disruption of the psycho-emotional state, the development of neuroses and psychosomatic pathology.

Results. Currently, antibiotic therapy takes the leading position in the treatment of recurrent urinary tract infections, as clearly indicated by both national and European clinical guidelines. At the same time, it should be noted that the tactics of preventive measures remain not fully developed and require further study and the formation of an evidence base. Due to the development of antibiotic resistance, including due to the irrational use of antibacterial drugs, and frequent adverse reactions, the role of non-antibacterial drugs in maintaining the health of the urinary tract is increasingly discussed in the literature. According to clinical guidelines developed by the European Association of Urology, antimicrobial drugs for prevention of relapses is addressed only in cases where the use of non-antibacterial agents has proven ineffective. Currently, European recommendations for the prevention of recurrent urinary tract infections include non-antibacterial agents such as D-mannose; preparations containing cranberries and/or products of its processing. Russian recommendations indicate the significant role of herbal medicine in the prevention of relapses of cystitis in women. Despite the fact that many non-antibacterial agents are already included in recommendations for the prevention of recurrent urinary tract infections, both European and national, their mechanism of action, dosage regimen, and duration of administration continue to be actively studied.

Conclusion. The currently accumulated clinical experience and research data indicate the great potential of such non-antibacterial agents as D-mannose, cranberry, vitamin D, birch leaf extract, which are part of the dietary supplement and can be used to maintain the health of the urinary tract.

About the Authors

E. V. Shikh
Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Россия

Evgenia V. Shikh, Сand. of Sci. (Med.), Professor, Head of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases 

8/2 Trubetskaya str., Moscow, 119991



O. V. Zhukova
Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Россия

Olga V. Zhukova, Сand. of Sci. (Med.), Аssociate professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases

8/2 Trubetskaya str., Moscow, 119991



References

1. Scribano D., Sarshar M., Prezioso C., et al. d-Mannose treatment neither affects uropathogenic Escherichia coli properties nor induces stable FimH modifications. Molecules. 2020; 25 (2): 316. https://doi.org/10.3390/molecules25020316.

2. Terlizzi M. E., Gribaudo G., Maffei M. E. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 2017; 8: 1566. http://dx.doi.org/10.3389/fmicb.2017.01566.

3. Kalas V., Hibbing M. E., Maddirala A. R., et al. Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacrerial adhesion during urinary tract infection. Proc. Natl. Acad. Sci. USA. 2018; 115: E2819-E2828. https://doi.org/10.1073/pnas.1720140115.

4. Karpov E. I. Urinary tract infections in outpatient practice. Terepiya. 2017; 3 (13): 89-95. (In Russ.) https://journals.eco-vector.com/2412-4036/article/view/277678.

5. EAU Guidelines. Edn. presented at the EAU Annual Congress Milan, Italy 2023. ISBN 978-94-92671-19-6.

6. Palleschi G., Carbone A., Zanello P. P., et al. Prospective study to compare antibiotic versus the associationofN-acetylcysteine, D-mannoseand Morindacitrifoliafruit extract in preventing urinary tract infections in patients submitted to urodynamic investigation. Arch. Ital. Urol. Androl. 2017; 89 (1): 45-50. https://doi.org/10.4081/aiua.2017.1.45.

7. Kyriakides R., Jones P., Somani B. K. Role of D-mannose in the prevention of recurrent urinary tract infections: evidence from a systemic review of the literature. Eur. Urol. Focus. 2021; 7 (5): 1166-1169. https://doi.org/10.1016/j.euf.2020.09.004.

8. Gadzhiyeva Z. K., Kazilov Yu. B. Features of the approach to the prevention of recurrent lower urinary tract infections. Urologiya. 2016; 3 (Appendix 3): 65–76. (In Russ.)

9. Makovetskaya G. A., Mazur L. I., Balashova E. A., Bazranova Yu. Yu. Infection of the lower urinary tract in children: clinical practice. Rossiiskii vestnik perinatologii i pediatrii. 2016; 61 (6): 99-103. (In Russ.) https://doi.org/10.21508/1027-4065-2016-61-6-99-103.

10. Clinical recommendations – Urinary tract infection in children – 2021-2022-2023 (11/10/2021). (In Russ.)

11. Nitkin D. M. Prevention of recurrent urinary tract infections in women. Reproductive health. Eastern Europe. 2021; 11 (2): 237-244. (In Russ.) https://translated.turbopages.org/proxy_u/en-ru.ru.40804855-656e2859-7e1f1887-74722d776562/https/doi.org/10.1136/dtb.2013.6.0187.

12. Sihra N., Goodman A., Zakri R., et al. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat. Rev. Urol. 2018; 15 (12): 750-776. https://doi.org/10.1038/s41585-018-0106-x.

13. Hooton T. M. Recurrent urinary tract infection in women. Int J Antimicrob Agents. 2001; 17 (4): 259-68. https://doi.org/10.1016/s0924-8579(00)00350-2.

14. McLellan L. K., Hunstad D. A. Urinary tract infection: pathogenesis and outlook. Trends Mol. Med. 2016; 22: 946-957. https://doi.org/10.1016/j.molmed.2016.09.003.

15. Anger J., Lee U., Ackerman A. L., et al. Recurrent uncomplicated urinary tract infections in women: AUA/CUA/SUFU Guideline. J. Urol. 2019; 202 (2): 282-289. https://doi.org/10.1097/ju.0000000000000296.

16. Naber K. G., Alidzhanov Zh. F. Are there alternative methods of antibacterial therapy and prevention of uncomplicated urinary tract infections. Urology. 2014; 6: 5-13. (In Russ.) https://translated.turbopages.org/proxy_u/en-ru.ru.d615021a-656e2974-62dd5f1c-74722d776562/pubmed.ncbi.nlm.nih.gov/25799720/.

17. Köves B., Cai T., Veeratterapillay R., Pickard R., et al. Benefits and Harms of Treatmentof Asymptomatic Bacteriuria: A Systematic Review and Meta-analysis bythe European Association of Urology Urological Infection Guidelines Panel. Eur. Urol. 2017 Jul 25. pii: S0302-2838(17)30602-4. https://doi.org/10.1016/j.eururo.2017.07.014.

18. Hu X., Shi Y. N., Zhang P., et al. D-Mannose: properties, production, and applications: an overview. Compr. Rev. Food Sci. Food Saf. 2016; 15 (4): 773-785. https://doi.org/10.1111/1541-4337.12211.

19. Sauer M. M., Jakob R. P., Eras J., et al. Catch-bond mechanism of the bacterial adhesin Fim. H. Nat. Commun. 2016; 7: 10738. https://doi.org/10.1038/ncomms10738.

20. Lenger S. M., Bradley M. S., Thomas D. A., Bertolet M. H., Lowder J. L., Sutcliffe S. D-mannose vs other agents for recurrent urinary tract infection prevention in adult women: a systematic review and meta-analysis [published online ahead of print, 2020 Jun 1]. Am J Obstet Gynecol. 2020; S0002-9378(20)30604-9. https://doi.org/10.1016/j.ajog.2020.05.048.

21. Porru D., Parmigiani A., Tinelli C., et al. Oral D-mannose in recurrent urinary tract infections in women: a pilot study. J. Clin. Urol. 2014: 7 (3): 208-213. http://dx.doi.org/10.1016/S1569-9056(13)61373-1.

22. Del Popolo G., Nelli F. Recurrent bacterial symptomatic cystitis: a pilot study on a new natural option for treatment. Arch. Ital. Urol. Androl. 2018; 90 (2):101. https://doi.org/10.4081/aiua.2018.2.101.

23. Domenici L., Monti M., Bracchi C., et al. D-mannose: a promising support for acute urinsry tract infections in women. A pilot study. Eur. Rev. Med. Pharmacol. Sci. 2016; 20 (13): 2920-2925. PMID: 27424995.

24. Kranjčec B., Papeš D., Altarac S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: A randomized clinical trial. World J Urol. 2014; 32 (1): 79-84. DOI: 10.1007/s00345-013-1091-6. https://doi.org/10.1007/s00345-013-1091-6.

25. Salinas-Casado J., Mendez-Rubio S., Esteban-Fuertes M., Gomez-Rodriguez A., Virseda-Chamorro M., Lujan-Galan M., et al. Efficacy and safety of D-mannose (2 g), 24h prolonged release, associated with Proanthocyanidin (PAC), versus isolate PAC, in the management of a series of women with recurrent urinary infections. Arch Esp Urol. 2018; 71 (2): 169-177. PMID: 29521263.

26. Клинические рекомендации Минздрава РФ «Цистит у женщин», 2021 г.

27. Valentova K., Stejskal D., Bednar P., Vostalova J., Cíhalík C., Vecerova R., Koukalova D., Kolar M., Reichenbach R., Sknouril L., Ulrichova J., Simanek V. Biosafety, antioxidant status, and metabolites in urine after consumption of dried cranberry juice in healthy women: a pilot double-blind placebo-controlled trial. J Agric Food Chem. 2007; 55 (8): 3217-3224. https://doi.org/10.1021/jf0636014.

28. Jass J., Reid G. Effect of cranberry drink on bacterial adhesion in vitro and vaginal microbiota in healthy females. Can J Urol. 2009; 16 (6): 4901-4907. PMID: 20003665.

29. Tempera G., Corsello S., Genovese C., Caruso F. E., Nicolosi D. Inhibitory activity of cranberry extract on the bacterial adhesiveness in the urine of women: an ex-vivo study. Int J Immunopathol Pharmacol. 2010; 23 (2): 611-618. https://doi.org/10.1177/039463201002300223.

30. Perez-Lopez F. R., Haya J., Chedraui P. Vaccinium macrocarpon: an interesting option for women with recurrent urinary tract infections and other health benefits. J Obstet Gynaecol Res. 2009; 35 (4): 630-639. https://doi.org/10.1111/j.1447-0756.2009.01026.x.

31. Excel G., Georgeault S., Inisan C., Bernard M. Inhibition of adhesion of uropathogenic Escherichia coli bacteria to uroepithelial cells by extracts from cranberry. J Med Food. 2012; 15 (2): 126-134. https://doi.org/10.1089/jmf.2010.0312.

32. Liu Y., Gallardo-Moreno A. M., Pinzon-Arango P. A., Reynolds Y., Rodriguez G., Camesano T. A. Cranberry changes the physicochemical surface properties of E. coli and adhesion with uroepithelial cells. Colloids Surf B Biointerfaces. 2008; 65 (1): 35-42. https://doi.org/10.1016/j.colsurfb.2008.02.012.

33. Guay D. R. Cranberry and urinary tract infections. Drugs. 2009; 69 (7): 775-807. https://doi.org/10.2165/00003495-200969070-00002.

34. Howell A. B., Reed J. D., Krueger C. G., Winterbottom R., Cunningham D.G., Leahy M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry. 2005; 66 (18): 2281-2291. https://doi.org/10.1016/j.phytochem.2005.05.022.

35. Foo L. Y., Lu Y., Howell A. B., Vorsa N. The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. Phytochemistry. 2000; 54: 173-181. https://doi.org/10.1016/s0031-9422(99)00573-7.

36. Howell A. B., Reed J. D., Krueger C. G., et al. A-type cranberry proanthocyanidins and uropathogenic bacterial antiadhesion activity. Phytochemistry. 2005; 66: 2281-2291. https://doi.org/10.1016/j.phytochem.2005.05.022.

37. Gilbart James. European Urological Review. 2011; 6 (2): 114-119.

38. Williams G., Hahn D., Stephens J. H., Craig J. C., Hodson E. M. Cranberries for preventing urinary tract infections. Cochrane Database of Systematic Reviews 2023, Issue 4. Art. No.: CD001321. https://doi.org/10.1002/14651858.cd001321.pub6.

39. Szymczak-Pajor I., Śliwińska A. Analysis of association between vitamin D deficiency and insulin resistance. Nutrients. 2019. Vol. 11. № 4. Р. 794. https://doi.org/10.3390/nu11040794.

40. Marino R., Micra M. Extra-skeletal effects of vitamin D. Nutrients. 2019. Vol. 11. № 7. Р. 1460. https://doi.org/10.3390/nu11071460.

41. Aydogmus H., Demirdal U. S. Vitamin D deficiency and lower urinary tract symptoms in women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018. Vol. 228. Р. 48-52. https://doi.org/10.1016/j.ejogrb.2018.06.009.

42. Serin S. O., Pehlivan O., Isiklar A., et al. The relationship between vitamin D level and lower urinary tract symptoms in women. SisliEtfalHastan. Tip Bul. 2020. Vol. 54. № 4. Р. 405-410. https://doi.org/10.14744/semb.2020.01709.

43. Ide H., Miyamoto H. The role of steroid hormone receptors in urothelial tumorigenesis . Cancers (Basel). 2020. Vol. 12. № 8. Р. 2155. DOI: 10.3390/cancers12082155.

44. Bishop B. L., Duncan M. J., Song J., et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat. Med. 2007. Vol. 13. № 5. P. 625-630. https://doi.org/10.1038/nm1572.

45. Lipovac M., Kurz C., Reithmayr F., et al. Prevention of recurrent bacterial urinary tract infections by intravesical instillation of hyalurinic acid. Int. J. Gynaecol. Obstet. 2007. Vol. 96. № 3. P. 192-195. https://doi.org/10.1016/j.ijgo.2006.11.025.

46. Constantinides C., Manousakas T., Nikoiopoulos P., et al. Prevention of recurrent bacterial cystitis by intravesical administration of hyalurinic acid. BJU Int. 2004. Vol. 93. № 9. P. 1262-1266. https://doi.org/10.1111/j.1464-410x.2004.04850.x.

47. Mohanty S., Kamolvit W., Hertting O., Brauner A. Vitamin D strengthens the bladder epithelial barrier by inducing tight junction proteins during E. coli urinary tract infection. Cell Tissue Res. 2020. Vol. 380. № 3. Р. 669-673. https://doi.org/10.1007/s00441-019-03162-z.

48. Hertting O., Hold Å., Lüthje P., et al. Vitamin D induction of the human antimicrobial peptide cathelicidin in the urinary bladder. PLoS One. 2010. Vol. 5. № 12. Р. 15580. https://doi.org/10.1371/journal.pone.0015580.

49. Wang T. T., Nestel F. P., Bourdeau V., et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 2004. Vol. 173. № 5. Р. 2909-2912. https://doi.org/10.4049/jimmu-nol.173.5.2909.

50. Gombart A. F., Borregaard N., Koeffler H. P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. Faseb. J. 2005. Vol. 19. № 9. Р. 1067-1077. https://doi.org/10.1096/fj.04-3284com.

51. Ramos N. L., Sekikubo M., Kironde F., et al. The Impact of vitamin D on the innate immune response to uropathogenic Escherichia coli during pregnancy. Clin. Microbiol. Infect. 2015. Vol. 21. № 5. Р. 482. e1-7. https://doi.org/10.1016/j.cmi.2014.12.010.

52. Chung C., Silwal P., Kim I., et al. Vitamin D-cathelicidin axis: at the crossroads between protective immunity and pathological inflammation during infection. Immune Netw. 2020. Vol. 20. № 2. Р. 12. https://doi.org/10.4110/in.2020.20.e12.

53. Heilborn J. D., Nilsson M. F., Kratz G., et al. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol. 2003. Vol. 120. № 3. Р. 379-389. https://doi.org/10.1046/j.1523-1747.2003.12069.x.

54. Frohm M., Agerberth B., Ahangari G., et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inf lammatory disorders. J. Biol. Chem. 1997. Vol. 272. № 24. Р. 15258-15263. https://doi.org/10.1074/jbc.272.24.15258.

55. Koczulla R., von Degenfeld G., Kupatt C., et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Invest. 2003. Vol. 111. № 11. Р. 1665-1672. https://doi.org/10.1172/jci17545.

56. Weber G., Heilborn J. D., Chamorro Jimenez C. I., et al. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J. Invest. Dermatol. 2005. Vol. 124. № 5. Р. 1080-1082. https://doi.org/10.1111/j.0022-202x.2005.23687.x.

57. Сantorna M. T., Snyder L., Lin Y. D., et al. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015. Vol. 7. № 4. Р. 3011-3021. https://doi.org/10.3390/nu7043011.

58. Benigni F., Baroni E., Zecevic M., et al. Oral treatment with a vitamin D3 analogue (BXL628) has anti-inflammatory effects in rodent model of interstitial cystitis. BJU Int. 2006. Vol. 97. № 3. Р. 617-624. https://doi.org/10.1111/j.1464-410x.2006.05971.x.

59. Aranow C. J. Vitamin D and the immune system. Investig. Med. 2011. Vol. 59. № 6. Р. 881-886. https://doi.org/10.2310/jim.0b013e31821b8755.

60. Sassi F., Tamone C., D'Amelio P. Vitamin D: nutrient, hormone, and immunomodulator. Nutrients. 2018. Vol. 10. № 11. Р. 1656. https://doi.org/10.3390/nu10111656.

61. Arnson Y., Amital H., Shoenfeld Y. Vitamin D and autoimmunity: new aetiological and therapeutic considerations. Ann. Rheum. 2007. Vol. 66. № 9. Р. 1137-1142. https://doi.org/10.1136/ard.2007.069831.

62. Martens P. J., Gysemans C., Verstuyf A., Mathieu A. C. Vitamin D's effect on immune function. Nutrients. 2020. Vol. 12. № 5. Р. 1248. https://doi.org/10.3390/nu12051248.

63. Kim M., Yeul Yu. H., Ju H., et al. Induction of detrusor underactivity by extensive vascular endothelial damages of iliac arteries in a rat model and its pathophysiology in the genetic levels. Sci. Rep. 2019. Vol. 9. № 1. Р. 16328. https://doi.org/10.1038/s41598-019-52811-4.

64. Kaur H., Bala R., Nagpal M. J. Role of vitamin D in urogenital health of geriatric participants. Midlife Health. 2017. Vol. 8. № 1. Р. 28-35. https://doi.org/10.4103/jmh.jmh_84_16.

65. Ali S. B., Perdawood D., Abdulrahman R., et al. Vitamin D deficiency as a risk factor for urinary tract infection in women at reproductive age. Saudi J. Biol. Sci. 2020. Vol. 27. № 11. Р. 2942-2947. https://doi.org/10.1016/j.sjbs.2020.08.008.

66. Yang J., Chen G., Wang D., et al. Low serum 25-hydroxyvitamin D level and risk of urinary tract infection in infants. Medicine (Baltimore). 2016. Vol. 95. № 27. Р. 4137. https://doi.org/10.1097/md.0000000000004137.

67. Mahmoudzadeh H., Nikibakhsh A. A., Pashapour S., Ghasemnejad-Berenji M. Relationship between low serum vitamin D status and urinary tract infection in children: a case-control study. Paediatr. Int. Child Health. 2020. Vol. 40. № 3. Р. 181-185. https://doi.org/10.1080/20469047.2020.1771244.

68. Tyuzikov I. A., Konovalov D. V., Bratchikov O. I. Vitamin D deficiency and lower urinary tract infections – are there pathogenetic connections. Effektivnaya farmakoterapiya. 2021; 17 (17): 22-30. (In Russ.) DOI: 10.33978/2307-3586-2021-17-17-22-30.

69. Harting O., Home A., Lüthje P., Brauner H., Dyrdak R., et al. Vitamin D Induction of the Human Antimicrobial Peptide Cathelicidin in the Urinary Bladder. PLoS ONE. 2010; 5 (12): e15580. https://doi.org/10.1371/journal.pone.0015580.

70. Mohanty S., Kamolvit W., Hertting O., et al. Vitamin D strengthens the bladder epithelial barrier by inducing tight junction proteins during E. coli urinary tract infection. Cell Tissue Res. 2020; 380: 669-673. https://doi.org/10.1007/s00441-019-03162-z.

71. Raudonė L., Raudonis R., Janulis V., Viškelis P. Quality evaluation of different preparations of dry extracts of birch (Betula pendula Roth) leaves. Nat Prod Res. 2014; 28 (19): 1645-1648. https://doi.org/10.1080/14786419.2014.925893.

72. Gründemann C., Gruber C. W., Hertrampf A., Zehl M., Kopp B., Huber R. An aqueous birch leaf extract of Betula pendula inhibits the growth and cell division of inf lammatory lymphocytes. J Ethnopharmacol. 2011; 136 (3): 444-451. https://doi.org/10.1016/j.jep.2011.05.018.

73. Das S. Natural therapeutics for urinary tract infections-a review. Futur J Pharm Sci. 2020; 6 (1): 64. https://doi.org/10.1186/s43094-020-00086-2.

74. Schilcher H., Rau H. Nachweis der aquaretischenWirkungvonBirkenblättern- und GoldrutenkauauszügenimTierversuch. Urologe B. 1988; 28: 274-280.

75. Major H. UntersuchungenzurWirkungsweise von Birkenblättern (Betulaefolium) und phenolischerVerbindungen, unterbesonderer Berücksichtigungder Beeinf lussung von Metallopeptidasen. Humboldt University, Berlin, Germany, 2002.

76. Rafsanjany N., Lechtenberg M., Petereit F., Hensel A. Antiadhesion as a functional concept for protection against uropathogenic Escherichia coli: in vitro studies with traditionally used plants with antiadhesive activity against uropathognic Escherichia coli. J Ethnopharmacol. 2013; 145 (2): 591-597. DOI: 10.1016/j.jep.2012.11.035. Epub 2012 Dec 2. https://doi.org/10.1016/j.jep.2012.11.035.

77. Wojnicz D., Kucharska A. Z., Sokół-Łętowska A., Kicia M., Tichaczek-Goska D. Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli. Urol Res. 2012; 40 (6): 683-697. DOI: 10.1007/s00240-012-0499-6. Epub 2012 Aug 23. https://doi.org/10.1007/s00240-012-0499-6.

78. Vikram A., Jayaprakasha G. K., Jesudhasan P. R., Pillai S. D., Patil B. S. Suppression of bacterial cell-cell signalling, biofilm for-mation and type III secretion system by citrus flavonoids. J Appl Microbiol. 2010; 109: 515-52737. https://doi.org/10.1111/j.1365-2672.2010.04677.x.

79. Lee J. H., Regmi S. C., Kim J. A., Cho M. H., Yun H., Lee C. S., Lee J. Apple flavonoid phloretin inhibits Escherichia coliO157:H7 biofilm formation and ameliorates colon inflammationin rats. Infect Immun. 2011; 79: 4819-4827. https://doi.org/10.1128/iai.05580-11.


Review

For citations:


Shikh E.V., Zhukova O.V. The role of non-antibacterial agents in the prevention of recurrent urinary tract infections. Lechaschi Vrach. 2024;(1):27-36. (In Russ.) https://doi.org/10.51793/OS.2024.27.1.004

Views: 159

JATS XML

ISSN 1560-5175 (Print)
ISSN 2687-1181 (Online)