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Генетические аспекты формирования неалкогольной жировой болезни
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Неалкогольная жировая болезнь печени (НАЖБП) является одной из наиболее распространенных причин
хронической болезни печени. В настоящее время НАЖБП имеет предполагаемую распространенность в общей
популяции от 20% до 30% в западных странах и от 5% до 18% в Азии и, по прогнозам, со временем возрастет [1–4].
Примечательно, что общая распространенность НАЖБП среди детей достигла примерно 10%, с тревожным
показателем распространенности 17% у подростков [5]. Эта распространенность резко увеличивается от 40% до
70% у детей с ожирением [6–7]. От 3% до 5% пациентов с НАЖБП могут заболеть ранним неалкогольным
стеатогепатитом (НАСГ) [8], характеризующимся долевыми и портальными воспалительными инфильтратами,
происходящими из моноцитов, макрофагов, нейтрофилов и лимфоцитов; различной степенью фиброза, гибелью
гепатоцитов и патологическим ангиогенезом [9].

Изотопные исследования биопсий печени у пациентов с ожирением, гипертриглицеридемией, гиперинсулинемией,
имеющих НАЖБП, выявили повышенные уровни потока свободных жирных кислот, полученных из жировой ткани, и
липогенез de novo [10], а также нарушение окисления и секреции жирных кислот [11]. Модулированная экспрессия
и/или секреция транскрипционных факторов и цитокины, соответственно, влияют на последующие метаболические
пути и, таким образом, играют решающую роль в патогенезе НАЖБП. Например, регуляторный элемент,
связывающий стерол-регуляторный белок 1с (SREBP-1c/SREBF1), контролирует экспрессию липогенных генов.
Повышенный SREBP-1c коррелирует с печеночным стеатозом у пациентов с НАЖБП [12]. Отсутствие элемента,
связывающего белок (ChREBP/MLXIPL), который регулирует метаболизм глюкозы и липогенез, облегчает течение
стеатоза печени, что указывает на то, что ChREBP также связан с НАЖБП [13]. Помимо факторов транскрипции,
участвующих в эндогенном липидном обмене, ядерные рецепторы, регулирующие метаболизм ксенобиотиков,
такие как рецептор прегнана X (PXR/NR1I2), конститутивный андростановый рецептор (CAR/NR1I3) и ферменты
метаболизма лекарств, также имеют измененные показатели у пациентов с НАЖБП [14].

Пататин-подобный фосфолипазный домен 3 (PNPLA3)

PNPLA3 является одним из немногих примеров, которые были подтверждены в нескольких популяциях и
убедительно показали общую связь с НАЖБП. Экспрессия PNPLA3 регулируется ChREBP и SREBP, которые
влияют на его функцию в метаболизме глюкозы и липидов [15]. Удивительно, но мыши с повышенной экспрессией
PNPLA3 не показали нарушения липолиза или наличие стеатоза печени [16]. Вариант rs738409 [G] значительно
ассоциируется с повышенным печеночным накоплением жировых клеток в печени и воспалением, тогда как
rs6006460 [T] коррелирует с низким содержанием печеночного жира. Это наблюдение было обнаружено в
финском исследовании [17] и недавнем крупномасштабном исследовании геномных ассоциаций GWAS (GWAS —
Genome-Wide Association Studies), в котором проводилось генотипирование 2,4 млн полиморфных единичных
нуклеотидов у 7100 человек в качестве метаанализа из нескольких крупных популяционных исследований [18].
Кроме того, исследование населения Китая, Индии, Малайзии, Японии и Соединенного Королевства указало, что к
наличию гомозиготности в варианте rs738409 [G] предрасположены пациенты с неалкогольным стеатогепатитом
(НАСГ) [19–21]. G-аллель rs738409 PNPLA3 также был чрезмерно представлен при алкогольном/метаболическом
циррозе [22].

Марганцевая супероксиддисмутаза (MnSOD/SOD2)

Так как окислительный стресс является одним из главных механизмов в развитии НАСГ, то молекулярные
механизмы, которые приводят к генерации активных форм кислорода (АФК), могут способствовать патогенезу
НАСГ. SOD2 защищает от АФК путем детоксикации супероксидов в кислород и перекись водорода. T1183C был
идентифицирован как ген, который направляет SOD2 в митохондрии [23]. У пациентов с НАЖБП наблюдалось
снижение транспорта белка в митохондрии. Эта связь была дополнительно подтверждена семейным анализом с
использованием теста неравновесия передачи в 55 информативных семьях европейской популяции с НАЖБП [24].

Фактор некроза опухоли α (ФНО-α)

ФНО-α является цитокином с широким спектром функциональных возможностей при воспалении, иммунном
ответе, апоптозе опухолевых клеток и метаболической регуляции организма [25]. Рост активности ФНО-α
коррелирует с инсулинорезистентностью и степенью активности воспалительных процессов, таким образом
увеличивая риск прогрессирования НАЖБП в стеатогепатит [26]. Было выявлено несколько различных вариантов
промотора гена ФНО-α. Варианты гена изучались на итальянской популяции, и была определена более высокая
распространенность промотора ФНО-α-308 у контрольной группы, по сравнению с пациентами, имеющими
НАЖБП, у которых более распространен вариант ФНО-α-238 [27]. Несмотря на нарушение чувствительности к
инсулину, вариант ФНО-α-238 также был связан с пониженным уровнем холестерина, липопротеинов низкой



плотности (ЛПНП) и сравнительно более низким индексом массы тела (ИМТ), что указывает на обратное влияние
на регуляцию глюкозы и липидного обмена [28].

Фосфатидилэтаноламин ​метилтрансфераза (phosphatidylethanolamine N-methyltransferase, PEMT)

PEMT способствует синтезу фосфатидилхолина из фосфатидилэтаноламина. Фосфатидилхолин является
важным компонентом формирования липопротеинов очень низкой плотности (ЛПОНП) для секреции
триглицеридов (ТГ) печени. В экспериментальном исследовании было показано, что потеря функции PEMT
приводит к увеличению накопления липидов у мышей [29].

Аполипопротеин Е (apolipoprotein E, ApoE)

ApoE является основным компонентом липопротеинов, и его роль в патогенезе НАЖБП широко признана.
Экспериментальные исследования, проведенные на грызунах, показывают пониженную восприимчивость к
развитию ожирения и НАЖБП при отсутствии ApoE [30]. Ген ApoE имеет варианты ε2, ε3 и ε4. Встречаемость
аллеля ApoE ε3 значительно выше у представителей кавказских национальностей с НАСГ по сравнению с
контрольной группой, в то время как наличие аллеля ApoE ε2 может защищать от НАЖБП [31].

Адипонектин (АН)

АН выполняет многочисленные системные защитные функции, такие как повышение чувствительности тканей к
инсулину, противовоспалительные, антифиброгенные и антиатерогенные эффекты, участвует в церамидном
катаболизме и подавлении глюконеогенеза в печени. Генотипы полиморфизма (SNP, Single nucleotide
polymorphism) G45T и G276T — наиболее часто встречающиеся варианты гена, кодирующего АН (ADIPOQ), в
итальянской когорте пациентов с НАЖБП, по сравнению с контрольной группой [32]. АН в печени связывается с
рецептором ADIPOR2, который отрицательно коррелирует с инсулинорезистентностью [33]. Вариант rs767870
гена, кодирующего рецептор адипонектина ADIPOR2, значительно чаще ассоциируется с печеночным накоплением
липидов, наблюдаемым в финской когорте и подтвержденным в двух независимых исследованиях [34].

Рецепторы инсулина

Инсулинорезистентность является обычным явлением при НАЖБП и НАСГ. Воспалительные факторы нацелены на
субстрат рецепторов инсулина для осуществления убиквитин-опосредованной деградации белков через активацию
супрессоров передачи сигналов цитокинов 3 (SOCS-3), вызывая тем самым подавление чувствительности к
инсулину [35]. Больные с НАЖБП и сахарным диабетом (СД) 2 типа обычно лечатся PPARγ-таргетированным
тиазолидиндионом, сенситайзером инсулина, который уменьшает высвобождение липидов, вызывает поглощение и
хранение липидов и подавляет печеночный глюконеогенез [36].

Гормон роста (ГР) и инсулиноподобный фактор роста (ИФР)

НАЖБП и другие варианты метаболического синдрома часто встречаются у пациентов с синдромом дефицита
гормона роста взрослых и гипопитуитаризмом. ГР оказывает активное влияние на окисление жирных кислот,
липолиз, клиренс ЛПНП и глюконеогенез [37]. Большинство этих эффектов осуществляется через взаимодействие
ГР с ИФР-1, который является катаболическим гормоном, секретируемым гепатоцитами при стимуляции ГР.
Исследования, проводимые на грызунах, также выявили ГР-независимые эффекты ИФР-1, заключающиеся в
улучшении течения стеатогепатита путем подавления окислительного стресса [38]. Пациенты, имеющие ожирение,
синдром дефицита гормона роста взрослых, НАЖБП и резистентность к инсулину, показывают низкий уровень ГР
и ИФР-1 и увеличение ГР-связывающего белка, который коррелирует со стадиями стеатоза и фиброза печени [39].
ГР-заместительная терапия уменьшает окислительный стресс у пациентов с НАСГ, с синдромом дефицита гормона
роста взрослых [40].

Циркадные ритмы — еще один фактор риска заболеваний печени

В печени циркадный ритм является результатом взаимодействия цис-регуляторных элементов [41]. Было выявлено
несколько циркадных факторов транскрипции, которые могут включать и выключать экспрессию генов, но знания
о глобальных изменениях ритмической транскрипции на уровне генома только начинают накапливаться [42].
Циркадные процессы на уровне тела включают цикл сна/бодрствования, температуру тела, кровяное давление,
секрецию гормонов и т. д. Концентрация нескольких метаболитов крови, включая холестерин [43] и кортикостерон
[44], аналог кортизола у мышей, изменяется в течение 24 часов. Таким образом, неудивительно, что
неповрежденные циркадные часы необходимы для поддержания гомеостаза организма [45] и что нарушение часов
приводит к десинхронизации метаболизма и, следовательно, к патологиям, включая ожирение и рак [46]. Кроме
того, часовые гены были определены как потенциальные терапевтические мишени. Небольшая синтетическая
молекула KL001 связывается с криптохромом CRY1 и предотвращает его деградацию, что приводит к удлинению
циркадного периода. Стабилизация белка CRY имеет важные метаболические последствия, так как он ингибирует
печеночный глюконеогенез [47]. Основными причинами нарушения работы часов являются хронические нарушения
образа жизни, профессиональные факторы или длительная сменная работа. Экспериментальные исследования



показали, что, по-видимому, люди и мыши имеют сходные механизмы, поскольку циркадная десинхрония также
способствует нарушению обмена веществ в мышиной модели сменной работы [48]. Поскольку связь между
печеночными часами и метаболическими нарушениями у людей трудно оценить, мышиные модели остаются
важными инструментами [49]. Животные с мутациями в генах часов предоставили ключевую информацию о
взаимозависимости между циркадными часами и метаболизмом [50]. Одно из самых ярких доказательств
существенной связи между часами и метаболизмом у людей вытекает из 14-летнего проспективного исследования,
проведенного в Японии, в котором около 7000 работников сталелитейной промышленности регулярно
обследовались на предмет общего состояния здоровья и липидных показателей крови. В ходе исследования было
установлено неблагоприятное влияние чередующейся сменной работы на липидный обмен, что привело к
статистически значимому повышению уровня общего холестерина в крови [51]. Последствия разрушения часов при
заболеваниях кишечной системы, включая воздействие на печень, также были рассмотрены [52], но прямая связь
между нарушением часов и заболеваниями печени была показана только на моделях мышей. Фиброз печени у
мышей приводит к изменениям циркадного ритма и генов печеночных часов, где суточный ритм криптохрома CRY2
заметно снижается и связан с потерей цитохром-P450-редуктазы (POR) [53]. Более того, нарушение циркадного
ритма ускоряет канцерогенез в печени у мышей, указывая на то, что постоянная циркадная координация может
замедлять или возобновлять развитие рака [54].

Другое исследование сообщило о связи между общими генетическими вариациями циркадого гена CLOCK и
восприимчивостью к НАЖБП [55]. В исследование были включены 136 пациентов с НАЖБП и 64 здоровых
человека, и было показано, что частоты гаплотипов варианта CLOCK значительно различаются между пациентами
с НАЖБП и контрольной группой. Новые показания указывают на то, что ферменты модификации гистонов
являются дополнительными мишенями генов, связанных с нарушениями циркадного ритма. Циркадная
модификация гистоновых областей в ежедневно активируемых генах подчеркивает эпигенетическую
модификацию как ключевой узел, регулируемый часами. Было обнаружено, что гистон-ремоделирующий фермент
MLL3 модулирует сотни эпигенетически нацеленных циркадных «выходных» генов печени. Таким образом, MLL3
является ферментом, связывающим циркадные часы и заболевания печени. Можно полагать, что другие гены и
метаболиты, связанные с циркадным ритмом, могут в будущем стать признанными многообещающими
неинвазивными маркерами, которые будут полезны при определении стадий и прогноза заболеваний печени.

Заключение

Сложный патогенез НАЖБП отражает гетерогенную природу заболевания с точки зрения прогрессирования,
серьезности и восприимчивости в разных этнических группах. Хотя исследование GWAS и другие генные подходы
выявили несколько факторов восприимчивости, связанных с НАЖБП, только немногие (в случае НАЖБП только
PNPLA3) были подтверждены в нескольких популяциях. Большинство исследований имеют недостаточную
статистическую выборку, не имеют хорошо подобранных образцов и отсутствие различных стадий заболевания.
Биопсия печени остается золотым стандартом для диагностики НАСГ, но большинство современных исследований
основано на ультразвуковой идентификации стадии заболевания, у которой не хватает точности из-за
невозможности различить стеатоз от ранних стадий НАСГ. Дальнейшее развитие комбинированной оценки рисков
полиморфизма в сочетании с секвенированием всего генома может помочь в выявлении групп высокого риска для
профилактики и раннего выявления заболевания.
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